Умножение и его свойства. Умножение натуральных чисел: свойства, примеры. II. Устный счёт

Для операции умножения натуральных чисел ℕ характерен ряд результатов, которые справедливы для любых умножаемых натуральных чисел. Эти результаты называются свойствами. В данной статье мы сформулируем свойства умножения натуральных чисел, приведем их буквенные определения и примеры.

Переместительное свойство часто называют также переместительным законом умножения. По аналогии с переместительным свойством для сложения чисел, оно формулируется так:

Переместительный закон умножения

От перемены мест множителей произведение не меняется.

В буквенном виде переместительное свойство записывается так: a · b = b · a

a и b - любые натуральные числа.

Возьмем любые два натурльных числа и наглядно покажем, что данное свойство справедливо. Вычислим произведение 2 · 6 . По определению произведения, нужно число 2 повторить 6 раз. Получаем: 2 · 6 = 2 + 2 + 2 + 2 + 2 + 2 = 12 . Теперь поменяем множители местами. 6 · 2 = 6 + 6 = 12 . Очевидно, переместительный закон выполняется.

На рисунке ниже проиллюститруем переместительное свойство умножения натуральных чисел.

Второе название для сочетательного свойства умножения - ассоциативный закон, или ассоциативное свойство. Вот его формулировка.

Сочетательный закон умножения

Умножение числа a на произведение чисел b и c равносильно умножению произведения чисел a и b на число c .

Приведем формулировку в буквенном виде:

a · b · c = a · b · c

Сочетательный закон работает для трех и более натуральных чисел.

Для наглядности приведем пример. Сначала вычислим значение 4 · 3 · 2 .

4 · 3 · 2 = 4 · 6 = 4 + 4 + 4 + 4 + 4 + 4 = 24

Теперь переставим скобки и вычислим значение 4 · 3 · 2 .

4 · 3 · 2 = 12 · 2 = 12 + 12 = 24

4 · 3 · 2 = 4 · 3 · 2

Как видим, теория совпадает с практикой, и свойство справедливо.

Сочетательное свойство умножения также можно проиллюстрировать с помощью рисунка.

Без распределительного свойста не обойтись, когда в математическом выражении одновременно присутствуют операции умножения и сложения. Это свойство определяет связь между умножением и сложением натуральных чисел.

Распределительное свойство умножения относительно сложения

Умножения суммы чисел b и c на число a равносильно сумме произведений чисел a и b и a и c .

a · b + c = a · b + a · c

a , b , c - любые натуральные числа.

Теперь на наглядном примере покажем, как работает это свойство. Вычислим значение выражения 4 · 3 + 2 .

4 · 3 + 2 = 4 · 3 + 4 · 2 = 12 + 8 = 20

С другой стороны 4 · 3 + 2 = 4 · 5 = 20 . Справедливость распределительного свойства умножения относительно сложения показана наглядно.

Для лучшего понимания приведем рисунок, иллюстрирующий суть умножения числа на сумму чисел.

Распределительное свойство умножения относительно вычитания

Распределительное свойство умножения относительно вычитания формулируется аналогично данному свойству относительно сложения, следует лишь учитывать знак операции.

Распределительное свойство умножения относительно вычитания

Умножения разности чисел b и c на число a равносильно разности произведений чисел a и b и a и c .

Запишем в форме буквенного выражения:

a · b - c = a · b - a · c

a , b , c - любые натуральные числа.

В предыдущем примере заменим "плюс" на "минус" и запишем:

4 · 3 - 2 = 4 · 3 - 4 · 2 = 12 - 8 = 4

С другой стороны 4 · 3 - 2 = 4 · 1 = 4 . Таким образом, справедливость свойства умножения натуральных чисел относительно вычитания показана наглядно.

Умножение единицы на натуральное число

Умножение единицы на натуральное число

Умножение единицы на любое натуральное число в результате дает данное число.

По определению операции умножения, произведение чисел 1 и a равно сумме, в котором слагаемое 1 повторяется a раз.

1 · a = ∑ i = 1 a 1

Умножение натурального числа a на единицу представляет собой сумму, состоящую из одого слагаемого a . Таким образом, переместительное свойство умножения остается справедливым:

1 · a = a · 1 = a

Умножение нуля на натуральное число

Число 0 не входит в множество натуральных чисел. Тем не менее, есть смысл рассмотреть свойство умножения нуля на натуральное число. Данное свойство часто используется при умножении натуральных чисел столбиком.

Умножение нуля на натуральное число

Произведение числа 0 и любого натурального числа a равно числу 0 .

По определению, произведение 0 · a равно сумме, в которой слагаемое 0 повторяется a раз. По свойствам сложения, такая сумма равна нулю.

В результате умножения единицы на нуль получается нуль. Произведение нуля на сколь угодно большое натуральное число также дает в результате нуль.

Напимер: 0 · 498 = 0 ; 0 · 9638854785885 = 0

Справедливо и обратное. Произведение числа на нуль также дает в результате нуль: a · 0 = 0 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

(4 урока, №113–135)

Урок 1 (113–118)

Цель – познакомить учащихся с сочетательным свой_

ством умножения.

На первом уроке полезно вспомнить, какие свойства

арифметических действий уже известны детям. Для этого

ражений, при выполнении которых школьники будут

пользоваться тем или иным свойством. Например, можно

ли утверждать, что значения выражений в данном столби_

ке одинаковы:

875 + (78 + 284)

(875 + 78) + 284

875 + (284 + 78)

(875 + 284) + 78

Имеет смысл предложить выражения, значения кото_

рых дети вычислить не могут, в этом случае они будут вы_

нуждены сделать вывод на основе рассуждений.

Сравнивая, например, первое и второе выражения, они

отмечают их сходство и различие; вспоминают сочетатель_

ное свойство сложения (два соседних слагаемых можно

заменить их суммой), откуда следует, что значения выра_

жений будут одинаковыми. Третье выражение целесооб_

разно сравнить с первым и, используя переместительное

свойство сложения, сделать вывод. Четвертое выражение

можно сравнить со вторым.

– Какие же свойства сложения применимы для вычис_

ления значений данных выражений? (Переместительное

и сочетательное.)

– Какими свойствами обладает умножение?

Ребята вспоминают, что им известно переместительное

свойство умножения. (Оно находит отражение на с. 34 учеб_

ника «Постарайся запомнить!»)

– Сегодня на уроке мы познакомимся еще с одним свой_

ством умножения!

На доске рисунок, данный в задании 113 . Учитель

ратов различными способами. Предложения детей обсуж_

даются. Если возникают трудности, то можно обратиться

к анализу способов, предложенных Мишей и Машей.

(6 · 4) · 2: в одном прямоугольнике 6 квадратов, умно_

жая 6 на 4, Маша узнает, сколько квадратиков содержат

прямоугольники в одном ряду. Умножая полученный ре_

зультат на 2, она выясняет, сколько квадратиков содержат

прямоугольники в двух рядах, т. е. сколько всего малень_

ких квадратиков на рисунке.

Затем обсуждаем способ Миши: 6 · (4 · 2). Сначала вы_

полняем действие в скобках – 4 · 2, т. е. узнаем, сколько

всего прямоугольников в двух рядах. В одном прямоуголь_

нике 6 квадратиков. Умножив 6 на полученный результат,

отвечаем на поставленный вопрос. Таким образом, и то, и

другое выражение обозначает, сколько всего маленьких

квадратиков на рисунке.

Значит, (6 · 4) · 2 = 6 · (4 · 2).

Аналогичная работа проводится с заданием 114 . Пос_

ле этого дети знакомятся с формулировкой сочетательного

свойства умножения и сравнивают ее с формулировкой

сочетательного свойства сложения.

Цель заданий 115–117 – выяснить, понятна ли детям

формулировка сочетательного свойства умножения.

При выполнении задания 116 рекомендуем использо_

вать калькулятор. Это позволит учащимся повторить ну_

мерацию трехзначных чисел.

Задачу 118 лучше решить на уроке.

Если дети будут затрудняться в самостоятельном реше_

нии задачи 118 , то учитель может использовать прием об_

суждения готовых решений или объяснения выражений,

записанных по условию данной задачи. Например:

10 · 5 8 · 10 8 · 5

(8 · 10) · 5 8 · (10 · 5)

(2_й столбец), а также задания 48, 54, 55 ТПО № 1.

Урок 2 (119–125)

Цель

умножения при вычислениях; вывести правило умноже_

ния числа на 10.

Работа с заданием 119 организуется в соответствии с

данными в учебнике указаниями:

а) дети используют переместительное свойство умноже_

ния, переставляя множители в произведении 4 · 10 = 10 · 4,

находят значение произведения 10 · 4, складывая десятки.

В тетрадях выполняются записи:

4 · 10 = 40;

6 · 10 = 60 и т. д.

б) дети действуют так же, как при выполнении зада_

ния а). В тетрадях записывают те равенства, которых нет

в задании а): 5 · 10 = 50; 7 · 10 = 70; 9 · 10 = 90;

в) анализируют и сравнивают записанные равенства,

делают вывод (при умножении числа на 10 надо приписать

к первому множителю нуль и полученное число записать в

результате);

г) проверяют сформулированное правило на калькуля_

торе.

Применение сочетательного свойства умножения и пра_

вила умножения на 10 позволяет учащимся умножать

«круглые» десятки на однозначное число, используя на_

выки табличного умножения (90 · 3, 70 · 4 и т. д.).

С этой целью выполняются задания 120, 121, 123, 124.

При выполнении задания 120 дети сначала расставля_

ют карандашом скобки в учебнике, а затем комментируют

свои действия. Например: (5 · 7) · 10 = 35 · 10 – здесь произ_

ведение первого и второго множителей заменили его зна_

чением. Полезно сразу выяснить, чему равно значение про_

изведения 35 · 10; 5 · (7 · 10) = 5 · 70 – здесь произведение

второго и третьего множителей заменили его значением.

При вычислении значения произведения 5 · 70 дети

могут рассуждать так: воспользуемся переместительным

свойством умножения – 5 · 70 = 70 · 5. Теперь 7 дес. можно

повторить 5 раз, получим 35 дес.; это число 350.

При объяснении некоторых равенств в задании 121

школьники сначала пользуются переместительным свой_

ством умножения, а затем – сочетательным. Например:

4 · 6 · 10 = 40 · 6

(4 · 10) · 6 = 40 · 6

каждом равенстве слева и справа.

Вычисляя значения выражений, записанных слева,

ребята обращаются к таблице умножения и затем увели_

чивают полученный результат в 10 раз:

(4 · 6) · 10 = 24 · 10

В задании 123 полезно рассмотреть различные спосо_

бы обоснования ответа. Например, можно во втором выра_

жении заменить произведение его значением, и мы полу_

чим первое выражение:

4 · (7 · 10) = 4 · 70

В третьем выражении нужно в этом случае сначала

воспользоваться сочетательным свойством умножения:

(4 · 7) · 10 = 4 · (7 · 10), а затем заменить произведение его

значением.

Но можно поступить по_другому, ориентируясь не на

первое, а на второе выражение. В этом случае число 70 в пер_

вом выражении нужно представить в виде произведения:

4 · 70 = 4 · (7 · 10)

А в третьем выражении воспользоваться для преобра_

зования сочетательным свойством:

(4 · 7) ·10 = 4 · (7 ·10)

Организуя обсуждение различных способов действий

в задании 123 , учитель может ориентироваться на диалог

Миши и Маши, который приведен в задании 124 .

тям обозначить на схеме известные и неизвестные вели_

чины. В итоге схема имеет вид:

Для вычислительных упражнений на уроке рекомен_

дуем задание 125, а также задания 59, 60 из ТПО № 1 .

Урок 3 (126– 132)

Цель – учиться применять сочетательное свойство

умножения для вычислений, совершенствовать умение

решать задачи.

Задание 126 выполняется устно. Его цель – совершен_

ствование вычислительных навыков и умения применять

сочетательное свойство умножения. Например, сравнивая

выражения а) 45 · 10 и 9 · 50, учащиеся рассуждают: число

45 можно представить в виде произведения 9 · 5, а затем

произведение чисел 5 · 10 заменить его значением.

Задание 128 также относится к вычислительным

упражнениям, где необходимо активное использование

анализа и синтеза, сравнения, обобщения. Формулируя пра_

вило построения каждого ряда, большинство детей исполь_

зуют понятие «увеличить на…». Например: для ряда – 6,

12, 18, ... – «каждое следующее число увеличивается на 6»;

для ряда – 4, 8, 12, ... – «каждое следующее число увели_

чивается на 4» и т. д.

Но возможен и такой вариант: «Для получения вто_

рого числа в каждом ряду первое число ряда увеличили

в 2 раза, для получения третьего числа в ряду первое

число ряда увеличили в 3 раза, четвертого – в 4 раза,

пятого – в 5 раз и т. д.

Выстраивая ряды по этому правилу, ученики факти_

чески повторяют все случаи табличного умножения.

чтения учащиеся могут либо самостоятельно нарисовать

схему, либо «оживить» ту схему, которую учитель заранее

изобразит на доске.

Решение задачи дети запишут в тетрадь самостоятельно.

В случае затруднений при решении задачи 129 реко_

мендуем использовать прием обсуждения готовых реше_

ний или объяснения выражений, записанных по условию

данной задачи:

10 · 3 3 · 4 10 · 4 (10 · 3) · 4 10 · (3 · 4)

Задачу 133 также желательно обсудить на уроке.

(1) 14 + 7 = 21 (д.) 2) 21 · 2 = 42 (д.))

задания 61, 62 ТПО № 1 .

Урок 4 (134–135)

Цель – проверить усвоение навыков табличного умно_

жения и умения решать задачи.

134, 135 .

Цель задания 134 – обобщить знания детей о таблице

умножения, которую можно представить в виде таблицы

Пифагора. Поэтому после того, как задание будет выпол_

нено, полезно выяснить:

а) В какие клетки таблицы можно вставить одинако_

вые числа и почему? (Эти клетки находятся в нижней стро_

ке и в правом столбике, что обусловлено переместительным

свойством умножения.)

б) Можно ли, не выполняя вычислений, сказать, на

сколько следующее число больше предыдущего в каждой

строке (столбце) таблицы? (В верхней (первой) строке –

на 1, во второй – на 2, в третьей – на 3 и т. д.) Это обуслов_

лено определением: «умножение – это сложение одина_

ковых слагаемых».

Следует также обратить внимание учащихся на то, что

вся таблица содержит 81 клетку. Это соответствует числу,

которое должно быть записано в ее нижней правой клетке.

Для проверки знаний, умений и навыков учащихся

Шмырева Г.Г. Контрольные работы. 3 класс. – Смоленск,

Ассоциация XXI век, 2004.

Начертим на листке в клетку прямоугольник со сторонами 5 см и 3 см. Разобьем его на квадраты со стороной 1 см (рис. 143 ). Подсчитаем количество клеток, расположенных в прямоугольнике. Это можно сделать, например, так.

Количество квадратов со стороной 1 см равно 5 * 3 . Каждый такой квадрат состоит из четырех клеток. Поэтому общее число клеток равно (5 * 3 ) * 4 .

Эту же задачу можно решить иначе. Каждый из пять столбцов прямоугольника состоит из трех квадратов со стороной 1 см. Поэтому в одном столбце содержится 3 * 4 клеток. Следовательно, всего клеток будет 5 * (3 * 4 ).

Подсчет клеток на рисунке 143 двумя способами иллюстрирует сочетательное свойство умножения для чисел 5, 3 и 4 . Имеем: (5 * 3 ) * 4 = 5 * (3 * 4 ).

Чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего чисел.

(ab)c = a(bc)

Из переместительного и сочетательно свойств умножения следует, что при умножении нескольких чисел множители можно менять местами и заключать в скобки, тем самым определяя порядок вычислений .

Например, верны равенства:

abc = cba,

17 * 2 * 3 * 5 = (17 * 3 ) * (2 * 5 ).

На рисунке 144 отрезок AB делит рассмотренный выше прямоугольник на прямоугольник и квадрат.

Подсчитаем количество квадратов со стороной 1 см двумя способами.

С одной стороны, в образовавшемся квадрате их содержится 3 * 3, а в прямоугольнике − 3 * 2 . Всего получим 3 * 3 + 3 * 2 квадратов. С другой стороны, в каждой из трех строчек данного прямоугольника находится 3 + 2 квадрата. Тогда их общее количество равно 3 * (3 + 2 ).

Равенсто 3 * (3 + 2 ) = 3 * 3 + 3 * 2 иллюстрирует распределительное свойство умножения относительно сложения .

Чтобы число умножить на сумму двух чисел, можно это число умножить на каждое слагаемое и полученные произведения сложить.

В буквенном виде это свойство записывают так:

a(b + c) = ab + ac

Из распределительного свойства умножения относительно сложения следует, что

ab + ac = a(b + c).

Это равенство позволяет формулу P = 2 a + 2 b для нахождения периметра прямоугольника записать в таком виде:

P = 2 (a + b).

Заметим, что распределительное свойство справедливо для трех и более слагаемых. Например:

a(m + n + p + q) = am + an + ap + aq.

Также справедливо распределительное свойство умножения относительно вычитания: если b > c или b = c, то

a(b − c) = ab − ac

Пример 1 . Вычислите удобным способом:

1 ) 25 * 867 * 4 ;

2 ) 329 * 75 + 329 * 246 .

1 ) Используем переместительное, а затме сочетательное свойства умножения:

25 * 867 * 4 = 867 * (25 * 4 ) = 867 * 100 = 86 700 .

2 ) Имеем:

329 * 754 + 329 * 246 = 329 * (754 + 246 ) = 329 * 1 000 = 329 000 .

Пример 2 . Упростите выражение:

1 ) 4 a * 3 b;

2 ) 18 m − 13 m.

1 ) Используя переместительное и сочетательное свойства умножения, получаем:

4 a * 3 b = (4 * 3 ) * ab = 12 ab.

2 ) Используя распределительное свойство умножения относительно вычитания, получаем:

18 m − 13 m = m(18 − 13 ) = m * 5 = 5 m.

Пример 3 . Запишите выражение 5 (2 m + 7 ) так, чтобы оно не содержало скобок.

Согласно распределительному свойству умножения относительно сложения имеем:

5 (2 m + 7 ) = 5 * 2 m + 5 * 7 = 10 m + 35 .

Такое преобразование называют раскрытием скобок .

Пример 4 . Вычислите удобным способом значение выражения 125 * 24 * 283 .

Решение. Имеем:

125 * 24 * 283 = 125 * 8 * 3 * 283 = (125 * 8 ) * (3 * 283 ) = 1 000 * 849 = 849 000 .

Пример 5 . Выполните умножение: 3 сут 18 ч * 6 .

Решение. Имеем:

3 сут 18 ч * 6 = 18 сут 108 ч = 22 сут 12 ч.

При решении примера было использовано распределительное свойство умножения относительно сложения:

3 сут 18 ч * 6 = (3 сут + 18 ч) * 6 = 3 сут * 6 + 18 ч * 6 = 18 сут + 108 ч = 18 сут + 96 ч + 12 ч = 18 сут + 4 сут + 12 ч = 22 сут 12 ч.

Математика в жизни часто бывает нужна. Но бывает так, что если вы и хорошо знали ее в школе, многие правила забываются. В этой статье мы вспомним свойства умножения.

Умножение и его свойства

Действие, результатом которого является сумма одинаковых слагаемых, называется умножение. То есть умножение числа Х на число Y, означает, что нужно определить суму Y слагаемых, каждое из которых будет равно Х. Числа, которые при этом перемножаются, называют множителями (сомножителями), результат умножения называется произведением.

Например,

548х11 = 548 + 548 + 548 + 548 + 548 + 548 + 548 + 548 + 548 (11 раз)

  • Если в умножении участвуют натуральные числа, то результатом такого умножения всегда будет число положительное.
  • В случае, если один из нескольких множителей 0 (ноль), то и произведение этих множителей будет равно нулю. И наоборот, если результат произведения 0, то нулю должен быть равен один из множителей.
  • В случае, когда один из данных множителей равняется 1 (единице), то произведение их будет равняться второму множителю.

Существует несколько законов умножения.

Закон первый

Он раскрывает нам сочетательное свойство умножения. Правило звучит следующим образом: чтобы выполнить умножение двух множителей на третий множитель, нужно выполнить умножение множителя первого на произведение второго и третьего множителей.

Общий вид данной формулы выглядит: (NхХ)хА = Nх(ХхА)

Примеры:

(11х12) х 3 = 11 х (12 х 3) = 396;

(13 х 9) х 11 = 13 х (9 х 11) = 1287.

Закон второй

Говорит он нам про переместительное свойство умножения. Правило гласит: при перестановке множителей произведение остается неизменным.

Общая запись выглядит:

NхХхА = АхХхN = ХхNхА.

Примеры:

11 х 13 х 15 = 15 х 13х 11 = 13 х 11 х 15 = 2145;

10 х 14 х 17 = 17 х 14 х 10 = 14 х 10 х 17 = 2380.

Закон третий

В этом законе говорится про распределительное свойство умножения. Правило звучит следующим образом: чтобы выполнить умножение числа на сумму чисел, нужно выполнить умножение этого числа на каждое из данных слагаемых и полученные результаты сложить.

Общая запись будет такая:

Хх(А+N)=ХхА+ХхN.

Примеры:

12 х (13+15) = 12х13 + 12х15 = 156 + 180 = 336;

17х (11 + 19) = 17 х 11 + 17 х 19 = 187 + 323 = 510.

Точно так же распределительный закон работает и в случае вычитания:

Примеры:

12 х (16-11) = 12х 16 – 12 х 11 = 192 – 132 = 60;

13 х (18 – 16) = 13 х 18 – 13 х 16 = 26.

Мы рассмотрели основные свойства умножения.


Мы определили сложение, умножение, вычитание и деление целых чисел. Эти действия (операции) обладают рядом характерных результатов, которые называются свойствами. В этой статье мы рассмотрим основные свойства сложения и умножения целых чисел, из которых следуют все остальные свойства этих действий, а также свойства вычитания и деления целых чисел.

Навигация по странице.

Для сложения целых чисел характерны еще несколько очень важных свойств.

Одно из них связано с существованием нуля. Это свойство сложения целых чисел утверждает, что прибавление к любому целому числу нуля не изменяет это число . Запишем данное свойство сложения с помощью букв: a+0=a и 0+a=a (это равенство справедливо в силу переместительного свойства сложения), a – любое целое число. Можно услышать, что целое число нуль называют нейтральным элементом по сложению. Приведем пару примеров. Сумма целого числа −78 и нуля равна −78 ; если к нулю прибавить целое положительное число 999 , то в результате получим число 999 .

Сейчас мы дадим формулировку еще одного свойства сложения целых чисел, которое связано с существованием противоположного числа для любого целого числа. Сумма любого целого числа с противоположным ему числом равна нулю . Приведем буквенную форму записи этого свойства: a+(−a)=0 , где a и −a – противоположные целые числа. Например, сумма 901+(−901) равна нулю; аналогично сумма противоположных целых чисел −97 и 97 равна нулю.

Основные свойства умножения целых чисел

Умножению целых чисел присущи все свойства умножения натуральных чисел . Перечислим основные из этих свойств.

Также как нуль является нейтральным целым числом относительно сложения, единица является нейтральным целым числом относительно умножения целых чисел. То есть, умножение любого целого числа на единицу не изменяет умножаемое число . Так 1·a=a , где a – любое целое число. Последнее равенство можно переписать в виде a·1=a , это нам позволяет сделать переместительное свойство умножения. Приведем два примера. Произведение целого числа 556 на 1 равно 556 ; произведение единицы и целого отрицательного числа −78 равно −78 .

Следующее свойство умножения целых чисел связано с умножением на нуль. Результат умножения любого целого числа a на нуль равен нулю , то есть, a·0=0 . Также справедливо равенство 0·a=0 в силу переместительного свойства умножения целых чисел. В частном случае при a=0 произведение нуля на нуль равно нулю.

Для умножения целых чисел также справедливо свойство, обратное к предыдущему. Оно утверждает, что произведение двух целых чисел равно нулю, если хотя бы один из множителей равен нулю . В буквенном виде это свойство можно записать так: a·b=0 , если либо a=0 , либо b=0 , либо и a и b равны нулю одновременно.

Распределительное свойство умножения целых чисел относительно сложения

Совместно сложение и умножение целых чисел нам позволяет рассматривать распределительное свойство умножения относительно сложения, которое связывает два указанных действия. Использование сложения и умножения совместно открывает дополнительные возможности, которых мы были бы лишены, рассматривая сложение отдельно от умножения.

Итак, распределительное свойство умножения относительно сложения гласит, что произведение целого числа a на сумму двух целых чисел a и b равно сумме произведений a·b и a·c , то есть, a·(b+c)=a·b+a·c . Это же свойство можно записать в другом виде: (a+b)·c=a·c+b·c .

Распределительное свойство умножения целых чисел относительно сложения вместе с сочетательным свойством сложения позволяют определить умножение целого числа на сумму трех и большего количества целых чисел, а далее – и умножение суммы целых чисел на сумму.

Также заметим, что все остальные свойства сложения и умножения целых чисел могут быть получены из указанных нами свойств, то есть, они являются следствиями указанных выше свойств.

Свойства вычитания целых чисел

Из полученного равенства, а также из свойств сложения и умножения целых чисел вытекают следующие свойства вычитания целых чисел (a , b и c – произвольные целые числа):

  • Вычитание целых чисел в общем случае НЕ обладает переместительным свойством: a−b≠b−a .
  • Разность равных целых чисел равна нулю: a−a=0 .
  • Свойство вычитания суммы двух целых чисел из данного целого числа: a−(b+c)=(a−b)−c .
  • Свойство вычитания целого числа из суммы двух целых чисел: (a+b)−c=(a−c)+b=a+(b−c) .
  • Распределительное свойство умножения относительно вычитания: a·(b−c)=a·b−a·c и (a−b)·c=a·c−b·c .
  • И все другие свойства вычитания целых чисел.

Свойства деления целых чисел

Рассуждая о смысле деления целых чисел , мы выяснили, что деление целых чисел – это действие, обратное умножению. Мы дали такое определение: деление целых чисел – это нахождение неизвестного множителя по известному произведению и известному множителю. То есть, целое число c мы называем частным от деления целого числа a на целое число b , когда произведение c·b равно a .

Данное определение, а также все рассмотренные выше свойства операций над целыми числами позволяют установить справедливость следующих свойств деления целых чисел:

  • Никакое целое число нельзя делить на нуль.
  • Свойство деления нуля на произвольное целое число a , отличное от нуля: 0:a=0 .
  • Свойство деления равных целых чисел: a:a=1 , где a – любое целое число, отличное от нуля.
  • Свойство деления произвольного целого числа a на единицу: a:1=a .
  • В общем случае деление целых чисел НЕ обладает переместительным свойством: a:b≠b:a .
  • Свойства деления суммы и разности двух целых чисел на целое число: (a+b):c=a:c+b:c и (a−b):c=a:c−b:c , где a , b , и c такие целые числа, что и a и b делится на c , и c отлично от нуля.
  • Свойство деления произведения двух целых чисел a и b на целое число c , отличное от нуля: (a·b):c=(a:c)·b , если a делится на c ; (a·b):c=a·(b:c) , если b делится на c ; (a·b):c=(a:c)·b=a·(b:c) , если и a и b делятся на c .
  • Свойство деления целого числа a на произведение двух целых чисел b и c (числа a , b и c такие, что деление a на b·c возможно): a:(b·c)=(a:b)·c=(a:c)·b .
  • Любые другие свойства деления целых чисел.