Библиография: описание Каталог статей. Как найти образующую конуса? Усеченный конус его элементы

Конус (с греческого «konos») – сосновая шишка. Конус знаком людям с глубокой древности. В 1906 году была обнаружена книга «О методе», написанная Архимедом (287-212 гг. до н. э.), в этой книге дается решение задачи об объеме общей части пересекающихся цилиндров. Архимед говорит, что это открытие принадлежит древнегреческому философу Демокриту (470-380 гг. до н.э.), который с помощью данного принципа получил формулы для вычисления объема пирамиды и конуса.

Конус (круговой конус) – тело, которое состоит из круга – основание конуса, точки, не принадлежащей плоскости этого круга, – вершины конуса и всех отрезков, соединяющих вершину конуса и точки окружности основания. Отрезки, которые соединяют вершину конуса с точками окружности основания, называются образующими конуса. Поверхность конуса состоит из основания и боковой поверхности.

Конус называется прямым, если прямая, которая соединяет вершину конуса с центром основания, перпендикулярна плоскости основания. Прямой круговой конус можно рассматривать как тело, полученное при вращении прямоугольного треугольника вокруг его катета как оси.

Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого конуса называется прямая, содержащая его высоту.

Сечение конуса плоскостью, проходящей через образующую конуса и перпендикулярная осевому сечению, проведённому через эту образующую, называется касательной плоскостью конуса.

Плоскость, перпендикулярная оси конуса, пересекает конус по кругу, а боковую поверхность – по окружности с центром на оси конуса.

Плоскость, перпендикулярная оси конуса отсекает от него меньший конус. Оставшаяся часть называется усечённым конусом.

Объём конуса равен трети произведения высоты на площадь основания. Таким образом, все конусы, опирающиеся на данное основание и имеющие вершину, находящуюся на данной плоскости, параллельной основанию, имеют равный объём, поскольку их высоты равны.

Площадь боковой поверхности конуса можно найти по формуле:

S бок = πRl,

Площадь полной поверхности конуса находится по формуле:

S кон = πRl + πR 2 ,

где R – радиус основания, l – длина образующей.

Объём кругового конуса равен

V = 1/3 πR 2 H,

где R – радиус основания, Н – высота конуса

Площадь боковой поверхности усеченного конуса можно найти по формуле:

S бок = π(R + r)l,

Площадь полной поверхности усеченного конуса можно найти по формуле:

S кон = πR 2 + πr 2 + π(R + r)l,

где R – радиус нижнего основания, r – радиус верхнего основания, l – длина образующей.

Объём усечённого конуса можно найти следующим образом:

V = 1/3 πH(R 2 + Rr + r 2),

где R – радиус нижнего основания, r – радиус верхнего основания, Н – высота конуса.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Сегодня мы расскажем вам о том, как найти образующую конуса, что частенько требуется в школьных задачках по геометрии.

Понятие образующей конуса

Прямой конус — это фигура, которая получается в результате вращения прямоугольного треугольника вокруг одно из его катетов. Основание конуса образует круг. Вертикальное сечение конуса — это треугольник, горизонтальное — круг. Высотой конуса является отрезок, соединяющий вершину конуса с центром основания. Образующей конуса является отрезок, который соединяет вершину конуса с любой точкой на линии окружности основания.

Так как конус образуется вращением прямоугольного треугольника, то получается, что первым катетом такого треугольника является высота, вторым — радиус круга, лежащего в основании, а гипотенузой будет образующая конуса. Нетрудно догадаться, что для расчета длины образующей пригодится теорема Пифагора. А теперь подробнее о том, как найти длину образующей конуса.

Находим образующую

Легче всего понять, как найти образующую, можно на конкретном примере. Допустим, даны такие условия задачи: высота равна 9 см., диаметр круга основания составляет 18 см. Необходимо найти образующую.

Итак, высота конуса (9 см.) - это один из катетов прямоугольного треугольника, с помощью которого был образован данный конус. Второй катет будет являться радиусом круга основания. Радиус — это половина диаметра. Таким образом, делим данный нам диаметр пополам и получаем длину радиуса: 18:2 = 9. Радиус равен 9.

Теперь найти образующую конуса очень легко. Так как она является гипотенузой, то квадрат ее длины будет равен сумме квадратов катетов, то есть сумме квадратов радиуса и высоты. Итак, квадрат длины образующей = 64 (квадрат длины радиуса) + 64 (квадрат длины высоты) = 64x2 = 128. Теперь извлекаем квадратный корень из 128. В итоге получаем восемь корней из двух. Это и будет образующая конуса.

Как видите, ничего сложного в этом нет. Для примера мы взяли простые условия задачи, однако в школьном курсе они могут быть и сложнее. Помните, что для расчета длины образующей вам нужно выяснить радиус круга и высоту конуса. Зная эти данные, найти длину образующей легко.






















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  • Образовательная : ввести понятие конуса, его элементов; рассмотреть построение прямого конуса; рассмотреть нахождение полной поверхности конуса; формировать умения решать задачи на нахождение элементов конуса.
  • Развивающая : развивать грамотную математическую речь, логическое мышление.
  • Воспитательная : воспитывать познавательную активность, культуру общения, культуры диалога.

Форма урока: урок формирования новых знаний и умений.

Форма учебной деятельности: коллективная форма работы.

Методы, используемые на уроке: объяснительно-иллюстративный, продуктивный.

Дидактический материал: тетрадь, учебник, ручка, карандаш, линейка, доска, мел и цветные мелки, проектор и презентация «Конус. Основные понятия. Площадь поверхности конуса».

План урока:

  1. Организационный момент (1 мин).
  2. Подготовительный этап (мотивация) (5 мин).
  3. Изучение нового материала (15 мин).
  4. Решение задач на нахождение элементов конуса (15 мин).
  5. Подведение итогов урока (2 мин).
  6. Задание на дом (2 мин).

ХОД УРОКА

1. Организационный момент

Цель: подготовить к усвоению нового материала.

2. Подготовительный этап

Форма: устная работа.

Цель: знакомство с новым телом вращения.

Конус в переводе с греческого “konos” означает “сосновая шишка”.

Встречаются тела в форме конуса. Их можно рассмотреть в различных предметах, начиная с обычного мороженого и заканчивая техникой, так же в детских игрушках (пирамидка, хлопушка и др.), в природе (ель, горы, вулканы, смерчи).

(Используются Слайды 1-7)

Деятельность учителя Деятельность ученика

3. Объяснение нового материала

Цель: ввести новые понятия и свойства конуса.

1. Конус может быть получен вращением прямоугольного треугольника вокруг одного из его катетов. (Слайд 8)
Теперь рассмотрим, как строится конус. Сначала изображаем окружность с центром O и прямую OP, перпендикулярную к плоскости этой окружности. Каждую точку окружности соединим отрезком с точкой P (учитель поэтапно строит конус). Поверхность, образованная этими отрезками, называется конической поверхностью , а сами отрезки – образующими конической поверхности .
В тетрадях строят конус.
(диктует определение) (Слайд 9) Тело, ограниченной конической поверхностью и кругом с границей L, называется конусом . Записывают определение.
Коническая поверхность называется боковой поверхностью конуса , а круг – основанием конуса . Прямая OP, проходящая через центр основания и вершину, называется осью конуса . Ось конуса перпендикулярна плоскости основания. Отрезок OP называется высотой конуса . Точка P называется вершиной конуса , а образующие конической поверхности – образующими конуса . На чертеже подписывают элементы конуса.
Назовите две образующие конуса и сравните их? PA и PB, они равны.
Почему образующие равны? Проекции наклонных равны как радиусы окружности, значит и сами образующие равны.
Запишите в тетради: свойства конуса: (Слайд 10)
1. Все образующие конуса равны.

Назовите углы наклона образующих к основанию? Сравните их.
Почему, докажите это?

Углы: PСО, PDO. Они равны.
Так как треугольник PAB – равнобедренный.

2. Углы наклона образующих к основанию равны.

Назовите углы между осью и образующими?
Что можно сказать об этих углах?

СРО и DPO
Они равны.

3. Углы между осью и образующими равны.

Назовите углы между осью и основанием?
Чему равны эти углы?

POC и POD.
90 о

4. Углы между осью и основанием прямые.

Мы будем рассматривать только прямой конус.

2. Рассмотрим сечение конуса различными плоскостями.
Что представляет собой секущая плоскость, проходящая через ось конуса?
Треугольник.
Какой это треугольник? Он равнобедренный.
Почему? Две его стороны являются образующими, а они равны.
Что представляет собой основание данного треугольника? Диаметр основания конуса.
Такое сечение называется осевым. (Слайд 11) Начертите в тетрадях и подпишите это сечение.
Что представляет собой секущая плоскость, перпендикулярная оси OP конуса?
Круг.
Где расположен центр этого круга? На оси конуса.
Это сечение называется круговым сечением.(Сдайл 12)
Начертите в тетрадях и подпишите это сечение.
Существуют и другие виды сечений конуса, которые не являются осевыми и не параллельны основанию конуса. Рассмотрим их на примерах. (Слайд 13)
Чертят в тетрадях.
3. Теперь выведем формулу полной поверхности конуса. (Слайд 14)
Для этого боковую поверхность конуса, как и боковую поверхность цилиндра, можно развернуть на плоскость, разрезав ее по одной из образующих.
Что является разверткой боковой поверхности конуса? (чертит на доске) Круговой сектор.
Что является радиусом этого сектора? Образующая конуса.
А длина дуги сектора? Длина окружности.
За площадь боковой поверхности конуса принимается площадь ее развертки. (Слайд 15) , где – градусная мера дуги.
Чему равна площадь кругового сектора?
Значит, чему равна площадь боковой поверхности конуса?

Выразим через и . (Слайд 16)
Чему равна длина дуги?

С другой стороны эта же дуга представляет собой длину окружности основания конуса. Чему она равна?
Подставляя в формулу боковой поверхности конуса получим, .
Площадью полной поверхности конуса называется сумма площадей боковой поверхности и основания. .
Запишите эти формулы.

Записывают: , .h

(Слайд 21)
L = 5

6. Домашнее задание. П.55, 56, № 548(б), 549(б). (Слайд 22)


Тема урока: Конус и его элементы

Цели урока: ввести понятия конуса, образующей, высотой и основания; ввести понятие площади боковой поверхности конуса как площади ее развертки; сформировать навык решения задач на нахождение элементов конуса.

Тип урока: комбинированный.

Оборудование: ПК, мультимедийный проектор, интерактивная доска, модели конусов.

Ход урока:


  1. Проверка домашнего задания у доски.

  2. Самостоятельная работа (Приложение 1.)

  3. Объяснение нового материала.

  • Понятия конуса, его элементов(вершина, ось, образующие, основание, боковая поверхность). Изображение конуса.
Конусом (точнее, круговым конусом) называется тело, кото­рое состоит из круга - основания конуса, точки, не лежащей в плоскости этого круга,- вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания (рис. 1).

Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими конуса. Поверхность конуса состоит из основания и боковой поверхности.

Конус называется прямым , если прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания. В дальнейшем мы будем рассматривать только прямой конус, называя его для краткости просто конусом. Наглядно прямой круговой конус можно представлять себе как тело, полученное при вращении прямоугольного треугольника вокруг его катета как оси (рис.2).

Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого кругового конуса называется прямая, содержащая его высоту.


  • ^ Сечение конуса разными плоскостями.

    Сечение конуса плоскостью, проходящей через его вершину, представляет собой равнобедренный треугольник, у которого боковые стороны являются образующими конуса (рис. 3). В частности, равнобедренным треугольником является осевое сечение конуса. Это сечение, которое проходит через ось конуса (рис. 4).



Теорема. Плоскость, параллельная плоскости основания конуса, пересекает конус по кругу, а боковую поверхность - по окружности с центром на оси конуса.

Доказательство. Пусть - плоскость, параллельная плоскости основания конуса и пересекающая конус (рис.5). Преобразование гомотетии относительно вершины конуса, совмещающее плоскость