Синтез лизосомных ферментов. Что такое лизосомы:строение, состав и функции лизосом Какие ферменты содержат лизосомы

Федеральное агентство по образованию

Пензенский государственный педагогический университет

имени В.Г.Белинского

Кафедра биохимии

Курсовая работа на тему:

«Биохимия лизосом»

Выполнила: студентка

группы БХ-31 Цибулькина И.С.

Проверил: Соловьёв В.Б.


1.Введение

2.Структура и состав лизосом

3.Образование лизосом

4.Биосинтез и транспорт лизосомных белков

5.Органеллы, образующиеся из лизосом

6.Классификация ферментов, содержащихся в лизосомах

7.Лизосомные болезни накопления

8.Заключение

9.Приложение

10.Список используемой литературы


Введение

Представление о лизосомах связаны с понятием о так называемых «микротельцах», впервые описанных Роденом, в проксимальных канальцах почки, а затем исследованных в печени при различных экспериментальных условиях Рулье и Бернгардом. Эти микротельца, значительно менее многочисленные, чем митохондрии, окружены только одной хорошо выраженной мембраной и содержат тонкозернистое вещество, которое может конденсироваться в центре, образуя непрозрачную гомогенную сердцевину. Эти микротельца часто находят вблизи желчных канальцев. Их выделяли при помощи центрифугирования и отнесли к лизосомам. Рулье и Бернгард показали, что число микротелец значительно увеличивается в печени, регенирующей после гепатэктомии или отравления химическими веществами, которые разрушают печеночные клетки (четыреххлористый углерод), а также при кормлении, возобновленном после голодания.

Термин «лизосома», обозначающий литические частицы, был введен в 1955 году Христианом де Дювом для связанных с мембранами органелл, содержащих пять кислых гидролаз, которые изучались де Дювом и его коллегами на протяжении нескольких лет. В настоящее время о лизосомах накоплено огромное количество сведений, известно около 40 типов различных гидролитических ферментов. Большое внимание уделяется исследованию ряда генетических дефектов ферментов, локализованных в этих органеллах и связанных с ними лизосомных болезней накопления.


1. Структура и состав лизосом

Лизосома (от греч. λύσις - растворяю и sōma - тело), органоид клеток животных и грибов, осуществляющий внутриклеточное пищеварение. Представляет собой окруженный одинарной мембраной пузырек диаметром 0,2-2,0мкм, содержащий как в матриксе, так и в мембране набор гидролитических ферментов (кислая фосфатаза, нуклеаза, катепсин Н (лизосомная аминопептидаза), катепсин А (лизосомная карбоксипептидаза),катепсин В, G, L, НАДФНоксидаза, коллагеназа, глюкуронидаза, глюкозидаза и др. всего около 40 типов), активных в слабокислой среде. Обычно на клетку приходится несколько сотен лизосом. В мембране лизосом находятся АТФ-зависимые протонные насосы вакуольного типа (рис.А). Они обогащают лизосомы протонами, вследствие чего для внутренней среды лизосом рН 4,5-5,0 (в то время как в цитоплазме рН 7,0-7,3). Лизосомные ферменты имеют оптимум рН около 5,0, т. е. в кислой области. При рН, близких к нейтральным, характерным для цитоплазмы, эти ферменты обладают низкой активностью. Очевидно, это служит механизмом защиты клеток от самопереваривания о том случае, если лизосомный фермент, случайно, попадет в цитоплазму.

Строение мембраны лизосом представляет собой комбинацию участков построенных по пластинчатому и мицеллярному типу. Мицеллы находятся в динамичном равновесие с пластинчатыми участками – это равновесие зависит от условий среды. Полярные группы фосфолипидов образуют поверхность мицеллы, а неполярные участки обращены внутрь. Пространство между молекулами липидов занято водой. Мицеллярные участки содержат длинные поры. Эти поры заполнены водой и могут закрываться полярными группами липидов. Подобная организация мембраны обеспечивает проницаемость не только для гидрофильных, но и для гидрофобных веществ.

Химический состав:

Неорганические соединения (Fe 3+ , свинец, кадмий, кремний)

Органические соединения (белки, полисахариды, некоторые олигосахариды – сахароза, фосфолипиды – фосфотидилхолин и фосфотидилсерин, жирные кислоты – ненасыщенные, что способствует высокой стабильности мембраны.)

2. Образование лизосом

По морфологии выделяют 4 типа лизосом:

1. Первичные лизосомы

2. Вторичные лизосомы

3. Аутофагосомы

4. Остаточные тельца

Первичные лизосомы представляют собой мелкие мембранные пузырьки, заполненные бесструктурным веществом, содержащим набор гидролаз. Маркерным ферментом для лизосом является кислая фосфотаза. Первичные лизосомы настолько мелкие, что их очень трудно отличить от мелких вакуолей на периферии зоны аппарата Гольджи. В дальнейшем первичные лизосомы сливаются с фагоцитарными или пиноцитарными вакуолями и образуют вторичные лизосомы или внутриклеточная пищеварительная вакуоль (рис. Б-3). При этом содержимое первичной лизосомы сливается с содержимым фагоцитарной или пиноцитарной вакуолей, а гидролазы первичной лизосомы получают доступ к субстратам, которые они начинают расщеплять.

Лизосомы могут сливаться друг с другом и таким путем увеличиваться в объеме, при этом усложняется их внутренняя структура. Судьба веществ, попавшивших в лизосомы, заключается в их расщеплении гидролазами до мономеров, мономеры транспортируются через мембрану лизосомы в гиалоплазму, где включаются в различные обменные процессы.

Расщепление и переваривание может идти не до конца. В этом случае в полости лизосом накапливаются непереваренные продукты, и вторичные лизосомы переходят в остаточные тельца (рис. Б-2). Остаточные тельца содержат меньше гидролитических ферментов, в них происходит уплотнение содержимого и его переотработка. Часто в остаточных тельцах наблюдается вторичная структуризация непереваренных липидов, которые образуют сложные слоистые структуры. Происходит отложение пигментных веществ.

Аутофагосомы встречаются в клетках простейших. Они относятся к вторичным лизосомам (рис. Б-1). Но в своем состояние содержат фрагменты цитоплазматических структур (остатки митохондрий, пластид, ЭПР, остатки рибосом, так же могут содержать гранулы гликогена). Процесс образования не ясен, но предполагают, что первичные лизосомы выстраиваются вокруг клеточной органеллы, сливаются друг с другом и отделяют органеллу от соседних участков цитоплазмы. Предполагают, что аутофагоцитоз связан с уничтожением сложных клеточных компонентов. В нормальных условиях число аутофагосом возрастает при метаболических стрессах. При различных повреждениях клеток аутофагоцитозу могут подвергаться целые зоны клеток.

Лизосомы присутствуют в самых разных клетках. Некоторые специализированны клетки, например лейкоциты, содержат их в особенно большом количестве. Интересно, что отдельные виды растений, в клетках которых лизосомы не обнаружены, содержат гидролитические ферменты в клеточных вакуолях, которые поэтому могут выполнять ту же функцию, что и лизосомы. Функция лизосом, по-видимому, лежит в основе таких процессов, автолиз и некроз тканей, когда ферменты освобождаются из этих органелл в результате случайных или «запрограммированных» процессов.

Естественной функцией лизосом является поставка гидролитических ферментов как для внутриклеточного, так и, возможно, для внеклеточного использования; после слияния мембран содержимое лизосом может смешиваться с содержимым фагоцитозных пузырьков, так что процессы гидролиза протекают в пространстве, обособленном от всех областей цитоплазмы, в которых находятся уязвимые для гидролиза внутриклеточные компоненты. Показано, что лизосомные ферменты могут освобождаться и во внеклеточное пространство. Продукты гидролиза могут проникать из органеллы в цитоплазму или выводиться из клетки наружу.

4. Биосинтез и транспорт лизосомных белков

Лизосомные белки синтезируются в ШЭР (рис. В), где они гликозилируются путем переноса олигосахаридных остатков. На последующей стадии, типичной для лизосомных белков, терминальные маннозные остатки (Man) фосфорилируются по C-6 (на схеме справа). Реакция протекает в две стадии. Сначала на белок переносится GlcNAc-фосфат, а затем идет отщепление GlcNAc. Таким образом, лизосомные белки в процессе сортировки приобретают концевой остаток маннозо-6-фосфата (Man-6-P, 2).

В мембранах аппарата Гольджи имеются молекулы-рецепторы, специфичные для Man-6-P-остатков и за счет этого специфически узнающие и селективно связывающие лизосомные белки (3). Локальное накопление этих белков происходит с помощью клатрина. Этот белок позволяет вырезать и транспортировать подходящие мембранные фрагменты в составе транспортных везикул к эндолизосомам (4), которые затем созревают с образованием первичных лизосом (5) в заключение от Man-6-P отщепляется фосфатная группа (6).

Man-6-P-рецепторы используются вторично в процессе рецикла. Снижение рН в эндолизосомах приводит к диссоциации белков от рецепторов (7). Затем рецепторы с помощью транспортных везикул переносятся обратно в аппарат Гольджи (8).


5. Органеллы, образуемые из лизосом

В некоторых дифференцированных клетках лизосомы могут выполнять специфические функции, образуя дополнительные органеллы. Все дополнительные функции связаны с секрецией веществ.

Органеллы Клетки Функции
Меланосомы меланоциты, ретинальный и
пигментный эпителий
образование, хранение и транспорт меланина
Тромбоцитные гранулы тромбоциты, мегакариоциты освобождение АТФ, АДФ, серотонина и кальция
Ламелярные тельца эпителий легких типа II, цитотоксические Т хранение и секреция сурфактанта необходимого для работы легких
Лизирующие гранулы лимфоциты, NK клетки разрушение клеток инфицированных вирусом или опухолевы
ГКГ класс II дендритные
клетки, В лимфоциты, макрофаги и др.
Изменение и представление антигенов для CD4+ T лимфоцитов для иммунной регуляции
Базофильные гранулы базофилы, mast клетки запускают высвобождение гистаминов и других воспалительных стимулов
Азурофильные гранулы нейтрофилы, эозинофилы высвобождают микробицидные и воспалительные агенты
Остеокластые гранулы остеокласты разрушение костей
Тельца Вейбеля-Палладе эндотелиальные клетки созревание и регулируемый выброс фактора Виллебрандта в кровь
а-гранулы тромбоцитов Тромбоциты, мегакариоциты выброс фибриногена и фактора Виллебрандта для адгезии тромбоцитов и свертывания крови

6. Классификация ферментов, содержащихся в лизосомах

Которые встречаются в большинстве и осуществляют функцию пищеварительных ферментов в .

Что такое лизосомы?

Лизосомы представляют собой сферические мембранные мешочки кислых гидрологических ферментов, которые способны переваривать клеточные макромолекулы. Лизосомальная мембрана помогает сохранить кислую среду внутри органеллы и отделяет пищеварительные ферменты от остальной части .

Лизосомные ферменты производятся белками из эндоплазматического ретикулума и заключены в везикулы с помощью .

Лизосомные ферменты

Лизосомы содержат различные гидролитические ферменты (около 50 различных типов), которые способны переваривать нуклеиновые кислоты, полисахариды, липиды и белки. Внутренняя часть лизосомы постоянно поддерживается кислой, так как ферменты лучше всего работают в кислой среде. Если целостность лизосомы нарушена, ферменты не окажут существенного вреда в нейтральном цитозоле клетки.

Образование

Лизосомы образуются в результате слияния везикул из комплекса Гольджи с эндосомами. Эндосомы - это везикулы, которые образуются , поскольку участок зажимается и интернализуется клеткой. В этом процессе внеклеточный материал поглощается клеткой. По мере того как эндосомы созревают, они становятся известными как поздние эндосомы.

Поздние эндосомы сливаются с транспортными везикулами из Гольджи, которые содержат кислотные гидролазы. После слияния, эти эндосомы в конечном итоге превращаются в лизосомы.

Функции лизосом

Лизосомы действуют как «мусорщики» клетки. Они принимают участие в рециркуляции органического материала клетки и внутриклеточного переваривания макромолекул.

Некоторые клетки, такие как лейкоциты, имеют гораздо больше лизосом, чем другие. Эти клетки уничтожают , мертвые клетки, раковые клетки и посторонние вещества посредством клеточного переваривания. поглощают вещество фагоцитозом и заключают его в везикулу, называемую фагосом.

Лизосомы в макрофаге сливаются с фагосомой, высвобождая свои ферменты и формируя так называемую фаголисосому. Интернализованный материал переваривается в фаголисосоме. Лизосомы также необходимы для деградации внутренних клеточных компонентов, таких как органеллы. Во многих организмах лизосомы участвуют в запрограммированной гибели клеток.

Дефекты лизосомы

У людей на лизосомы могут влиять различные наследственные состояния. Эти генные мутации вызывают такие болезни, как Помпе, синдром Херлера и болезнь Тай-Сакса. У людей с этими нарушениями отсутствует один или несколько лизосомных гидролитических ферментов. Это приводит к нарушению нормального метаболизма макромолекул в организме.

А. Структура лизосом

Лизосомы -- это органеллы диаметром 0,2-2,0 мкм, окруженные простой мембраной, способные принимать самые разные формы. Обычно на клетку приходится несколько сотен лизосом. Функция лизосом заключается в деградации клеточных компонентов. Деградация достигается за счет присутствия в лизосомах около 40 типов различных расщепляющих ферментов -- гидролаз с оптимумом действия в кислой области. Главный фермент лизосом -- кислая фосфатаза. В мембране лизосом находятся АТФ-зависимые протонные насосы вакуольного типа. Они обогащают лизосомы протонами, вследствие чего для внутренней среды лизосом рН 4,5-5,0 (в то время как в цитоплазме рН 7,0-7,3). Лизосомные ферменты имеют оптимум рН около 5,0, т. е. в кислой области. При рН, близких к нейтральным, характерным для цитоплазмы, эти ферменты обладают низкой активностью. Очевидно, это служит механизмом защиты клеток от самопереваривания о том случае, если лизосомный фермент случайно попадет в цитоплазму.

Б. Функции

Главная функция лизосом -- ферментативная деградация попавших в них макромолекул и органелл. Примером может служить деградация отработавших митохондрий по механизму аутофагии (захвата органеллы) (1). После захвата органеллы первичные лизосомы превращаются во вторичные, в которых и идет процесс гидролитического расщепления (2). В итоге образуются «остаточные тела», состоящие из негидролизовавшихся фрагментов. Лизосомы ответственны также за деградацию макромолекул и частиц, захваченных клетками путем эндоцитоза и фагоцитоза, например липопротеинов, протеогормонов и бактерий (гетерофагия). В этом случае лизосомы сливаются с эндосомами (3), содержащими вещества, подлежащие деградации.

В. Ферменты, их химическая природа и функциональное значение.

Ферменты лизосом: рибонуклеаза, дезоксирибонуклеаза, фосфатаза, гликозидазы, арилсульфатазы (органические эфиры серной кислоты), коллагеназа, катепсины.

Г. Функции

Лизосомы представляют собой крайне полиморфные образования, строение которых можно рассмотреть только в электронном микроскопе. Их разнообразие связано с тем, что они заполнены разными веществами и структурами, находящимися на различных стадиях расщепления и переваривания. Простейшие лизосомы (протолизосомы или первичные лизосомы) - это окруженные мембраной пузырьки с гомогенным содержимым, локализующиеся около аппарата Гольджи. Образование лизосом аналогично развитию секреторных гранул. Синтез ферментов осуществляется на рибосомах гранулярного ретикулума, а процесс оформления лизосом происходит в аппарате Гольджи. Доказательством того, что образование лизосом связано с внутриклеточным сетчатым аппаратом, является не только их локализация, но и выявление кислой фосфатазы помимо лизосом и в комплексе Гольджи.

Вторичные лизосомы образуются из первичных лизосом либо в связи с процессом фагоцитоза, либо в результате аутолиза.

В результате фагоцитоза в цитоплазме клеток появляются фагосомы - вакуоли, окруженные фрагментом плазматической мембраны, внутри которых находится захваченная частица. Эти фагосомы с первичными лизосомами, образуют пищеварительные вакуоли - одну из разновидностей вторичных лизосом. Под действием гидролаз внутри пищеварительной вакуоли происходит расщепление захваченных макромолекул до мономеров, которые используются клеткой.

Лизосома может быть использована вторично и вновь соединиться уже с другой фагосомой. В других случаях она работает лишь один раз и, исчерпав свои возможности, в новый пищеварительный процесс уже вступить не может.

В результате процесса аутолиза образуется другая разновидность вторичных лизосом - так называемые аутолизосомы. Явление аутолиза (переваривания структур, принадлежащих самой клетке) связано с тем, что жизнь клеточных структур не безгранична. Старые органоиды отмирают и начинают перевариваться лизосомами. Мономерами, образующимися в процессе аутолиза, клетка также может воспользоваться.

Из сказанного ясно, что разнообразие тонкого строения лизосом обусловлено тем, что они заполнены разными перевираемыми структурами, как принадлежащими самой клетке, так и попавшими в нее извне.

Не все, попавшее в лизосому, может подвергнуться расщеплению. Так, например, среди гидролаз лизосом находится лишь очень небольшой процент липаз, поэтому в телолизосомах липидные компоненты часто не расщепляются. Образуются остаточные тельца - лизосомы, заполненные непереваренными остатками, исчерпавшие весь свой запас гидролаз. Такие структуры - телолизосомы - либо выводятся за пределы клетки, как, например, у простейших, либо сохраняются в клетке до момента ее гибели. В некоторых нервных клетках такие балластные вещества в виде окрашенных непереваренных частиц (например, зерен липофусцина, являющихся показателем старения) сохраняются на протяжении всей жизни организма.

Следует также упомянуть о тех случаях, когда гидролитические ферменты проявляют свою активность за пределами лизосом. Например, при некоторых патологических состояниях клетки мембрана, окружающая лизосомы, становится проницаемой для ферментов, которые выходят за пределы лизосом и начинают переваривать клетку. Таким образом, уничтожение стареющих, гибнущих клеток может происходить двумя путями. Либо эти клетки захватываются макрофагами и расщепляются гидролазами их лизосом, либо включается в действие аппарат аутолиза самой клетки.

Совершенно иной внеклеточный способ использования лизосом наблюдается в процессе гистогенеза костной ткани и при перестройке кости. В этом случае специальные симпластические структуры - остеокласты выделяют лизосомы в промежуточное вещество костной ткани, которое разрушается под действием гидролаз лизосом.

Лизис хвоста головастика тоже представляет собой процесс, связанный с деятельностью лизосом.

Таким образом, лизосомы играют роль и для внеклеточных процессов и имеют приспособительное значение для организма в целом.

3. Митохондрии: структура и функции

А. Структура митохондрий

Митохондрии - это органеллы размером с бактерию (около 1 х 2 мкм). Они найдены в большом количестве почти во всех эукариотических клетках. Митохондрии - это цитоплазматические органеллы. Их количество и форма варьируют в зависимости от функции клетки. Например, у млекопитающих в клетках печени имеется по 1000-1500 митохондрий. Все они имеют общие структурные особенности матрикс, внутреннюю и внешнюю мембрану Обычно в клетке содержится около 2000 митохондрий, общий объем которых составляет до 25% от общего объема клетки. Митохондрия ограничена двумя мембранами - гладкой внешней и складчатой внутренней, имеющей очень большую поверхность. Складки внутренней мембраны глубоко входят в матрикс митохондрий, образуя поперечный перегородки - кристы. Пространство между внешней и внутренней мембранами обычно называют межмембранным пространством.

Различный типы клеток отличаются друг от друга как по количеству и форме митохондрий, так и по количеству крист. Особенно много крист имеют митохондрии в тканях с активными окислительными процессами, например в сердечной мышце. Вариации митохондрий по форме, что зависит от их функционального состояния, могут наблюдаться и в тканях одного типа. Митохондрии -- изменчивые и пластичные органеллы.

Мембраны митохондрий содержат интегральные мембранные белки. Во внешнюю мембрану входят порины, которые образуют поры и делают мембраны проницаемыми для веществ с молекулярной массой до 10 кДа. Внутренняя же мембрана митохондрий непроницаема для большинства молекул; исключение составляют О2, СО2, Н20. Внутренняя мембрана митохондрий характеризуется необычно высоким содержанием белков (75%). В их число входят транспортные белки-переносчики, ферменты, компоненты дыхательной цепи и АТФ-синтаза. Кроме того, в ней содержится необычный фосфолипид кардиолипин. Матрикс также обогащен белками, особенно ферментами цитратного цикла.

Б. Метаболические функции

Митохондрии являются «силовой станцией» клетки, поскольку за счет окислительной деградации питательных веществ в них синтезируется большая часть необходимого клетке АТФ (АТР). В митохондриях локализованы следующие метаболические процессы: превращение пирувата в ацетил-КоА, катализируемое пируватдегидрогеназным комплексом: цитратный цикл; дыхательная цепь, сопряженная с синтезом АТФ (сочетание этих процессов носит название «окислительное фосфорилирование»); расщепление жирных кислот путем в-окисления и частично цикл мочевины. Митохондрии также поставляют клетке продукты промежуточного метаболизма и действуют наряду с ЭР как депо ионов кальция, которое с помощью ионных насосов поддерживает концентрацию Са2+ в цитоплазме на постоянном низком уровне (ниже 1 мкмоль/л), то есть поглощение из цитозоля ионов Са2+ . Концентрация Са2+ в цитозоле должна поддерживаться на очень низком уровне, так как даже незначительные изменения концентрации этих ионов служат регуляторными сигналами для различных клеточных процессов (разд. 13.3.7). Во внутренней мембране имеется транспортный белок, эффективно переносящий Са2+ в матрикс за счет энергии мембранного потенциала.

Главной функцией митохондрий является захват богатых энергией субстратов (жирные кислоты, пируват, углеродный скелет аминокислот) из цитоплазмы и их окислительное расщепление с образованием СО2 и Н2О, сопряженное с синтезом АТФ.

Реакции цитратного цикла приводят к полному окислению углеродсодержащих соединений (СО2) и образованию восстановительных эквивалентов, главным образом в виде восстановленных коферментов. Большинство этих процессов протекают в матриксе. Ферменты дыхательной цепи, которые реокисляют восстановленные коферменты, локализованы во внутренней мембране митохондрий. В качестве доноров электронов для восстановления кислорода и образования воды используются НАДН и связанный с ферментом ФАДН2. Эта высоко экзергоническая реакция является многоступенчатой и сопряжена с переносом протонов (Н+) через внутреннюю мембрану из матрикса в межмембранное пространство. В результате на внутренней мембране создается электрохимический градиент. В митохондриях электрохимический градиент используется для синтеза АТФ из АДФ (ADP) и неорганического фосфата (Рi) при катализе АТФ-синтазой. Электрохимический градиент является также движущей силой ряда транспортных систем

Митохондрии осуществляют важные биохимические функции, в частности, именно в них происходит аэробное окисление. Вот почему эти органеллы часто называют энергетической фабрикой организма. Энергия хранится в АТР (аденозинтрифосфат). Из трех энергетических источников нашей пищи аминокислоты и жиры подвергаются распаду только в результате аэробного окисления, которое происходит в митохондриях. Кроме того, в них осуществляется цикл лимонной кислоты. Мембрана митохондрий содержит упорядоченную мультиферментную систему, а распределение ферментов в функционально значимом порядке гарантирует упорядоченную последовательность биохимических реакций.

В. Транспортные системы

Митохондрии имеют внутреннюю и внешнюю мембраны.

Внутренняя мембрана непроницаема для большинства низкомолекулярных соединений. Она удерживает не только продукты промежуточного метаболизма (например, пируват и ацетил-КоА), но и неорганические ионы (Н+ и Na+). Поэтому в цитоплазме и митохондриях существуют независимые пулы ионов и метаболитов. Напротив, внешняя мембрана содержит порообразующие белки, которые делают ее проницаемой для низкомолекулярных соединений.

Транспортные системы

Обмен между цитоплазмой и матриксом обеспечивается специальными транспортными системами, локализованными во внутренней мембране митохондрий и способными переносить разнообразные вещества (пируват, фосфат, АТФ, АДФ, глутамат, аспартат, малат, 2-оксоглутарат, цитрат, жирные кислоты) по механизмам типа антипорт (обменная диффузия, А), симпорт (сопряженный транспорт, S) или унипорт (облегченная диффузия, U) (см. рис. 221). Имеется переносчик и для ионов Са2+, который наряду с ЭР регулирует концентрацию Са2+ в цитоплазме.

Большая часть АТФ. продуцируемого митохондриями в матриксе, доставляется в цитоплазму с помощью АДФ/АТФ-транслоказы в обмен на АДФ (обменная диффузия). Фосфат поступает в митохондрии вместе с протонами независимо от транспорта АДФ/АТФ.

Аналогичным образом при участии пируватспецифичного переносчика осуществляется одновременный перенос через внутреннюю мембрану пирувата и протонов.

Транспорт жирных кислот

В митохондриях за перенос жирных кислот отвечает специальная транспортная система. Активированные жирные кислоты в форме ацил-КоА становятся транспортабельными в цитоплазме после взаимодействия с карнитином. Образовавшийся ацилкарнитин транспортируется в матриксе карнитиновым переносчиком, обмениваясь на свободный карнитин. В матриксе ацильные остатки вновь связываются с КоА.

Малатный челнок

Для импорта восстановительных эквивалентов в форме НАДН+Н+ (кофермент-связанного водорода), образующихся в цитоплазме путем гликолиза, в митохондриях имеются несколько челночных систем. В митохондриях млекопитающих этот транспорт осуществляется в основном при помощи челночного механизма, использующего пару малат-оксалоацетат. Основной функцией этого механизма является перенос восстановительных эквивалентов в составе малата. Малат, попадая в матрикс при посредстве переносчика, окисляется до оксалоацетата под действием малатдегидрогеназы. Оксалоацетат переносится обратно в цитоплазму лишь после трансаминирования в аспартат. Поскольку оксалоацетат может образовываться в избыточном количестве, в реакции трансаминирования и последующем транспорте принимает участие глутамат и 2-оксоглутарат. На схеме показано, что малатный челнок функционирует в обоих направлениях, обеспечивая перенос восстановительных эквивалентов от цитоплазматического НАДН в митохондрии без переноса НАД+. В митохондриях насекомых трансмембранный перенос восстановительных эквивалентов осуществляется с помощью глицерофосфатного челнока.

Движущей силой транспортных процессов во внутренней мембране митохондрий служит концентрационный градиент метаболитов или электрохимический потенциал (см. рис. 143). Например, карнитиновая система транспорта жирных кислот работает за счет высоких концентраций ацил-КоА в цитоплазме. Движущей силой импорта фосфата и пирувата служит протонный градиент, в то время как обмен АТФ/АДФ и выброс ионов Са2+ зависят от трансмембранного потенциала внутренней мембраны митохондрий.

Г. Ферменты митохондрий

Основные ферменты митохондрий:

Ферменты митохондрий состоят из растворимых и нерастворимых белков: флавопротеиды, цитохромы -- компоненты дыхательной цепи -- жестко фиксированы на мито-хондриальной мембране и гребнях. Растворимые ферменты принимают участие в биосинтезе фосфолипидов и жирных кислот; здесь же находится полный набор ферментов, катализирующих превращения цикла трикарбоновых кислот.

Лизосома представляет собой мембранный мешочек, наполненный пищеварительными ферментами диаметром 0,2…0,5 мкм.

Лизосомы расщепляют питательные вещества, переваривают бактерии, попавшие в клетку, выделяют ферменты и др. Лизосомы также являются «средствами самоубийства» клетки: в некоторых случаях содержимое лизосом высвобождается в клетку, и она погибает.

Лизосомы были открыты в 1949 г. де’Дювом. Лизосомы находятся в клетках почти всех типов, но количество их весьма разнообразно и зависит от специализации клетки. Очень много лизосом в макрофагах и нейтрофильных гранулоцитах, которые специализированы на фагоцитозе. При световой микроскопии лизосомы видны как мелкие гранулы (пузырьки), содержащие смесь гидролитических ферментов. Если лизосом много, то при общих методах окраски они заметны за счет связывания основного красителя.

Лучше заметны органеллы при световой микроскопии при специальных методах окрашивания, например выявляющих кислую фосфатазу - специфический белок лизосом.

Лизосомы разрушают структуры клетки, то есть участвуют в непрерывных процессах регенерации, уничтожая старые, измененные органеллы, части клетки, освобождая пространство для новых элементов. Однако они играют важную роль не только в том, что поддерживают клетки в нормальном состоянии, но и принимают участие в защитных реакциях клетки и организма в целом. Так, лизосомы переваривают чужеродные частицы, захваченные путем фагоцитоза.

Содержимое лизосомы различается в зависимости от функциональной активности органеллы, имеет кислую реакцию (pH около 5), а это значительно отличает ее от матрикса цитоплазмы. Кислотность внутри органеллы обеспечивают транспортные (помповые) белки, осуществляющие трансмембранный перенос ионов водорода, накапливая их в просвете органеллы.

Структурное разнообразие лизосом обусловлено их участием во внутриклеточном переваривании с образованием сложных пищеварительных вакуолей как экзогенного (внеклеточного), так и эндогенного (внутриклеточного) происхождения.

Различают несколько видов лизосом.

Первичные лизосомы . Представляют собой мелкие пузырьки, содержащие смесь около сорока гидролитических ферментов (гидролаз), в том числе активную кислую фосфатазу. Их средний диаметр составляет около 0,1 мкм. В гр. ЭПС синтезируются гидролазы. Проферменты транспортируются из гр. ЭПС в комплекс Гольджи, где они перемещаются от проксимальных участков диктиосом до дистальных (от цис — к транс-компартменту) и, наконец, сегрегируются в первичные лизосомы. В ходе этого процесса происходит модификация проферментов. Таким образом, весь путь образования первичных лизосом очень сходен с образованием секреторных (зимогенных) гранул в клетках поджелудочной железы, за исключением последнего этапа. Содержимое лизосом не переваривает мембрану, отделяющую гидролазы от матрикса цитоплазмы, благодаря наличию в их составе специальных протекторных соединений на внутренней поверхности. Вероятнее всего, это олигосахаридные комплексы.

Вторичные лизосомы . Представляют собой активно функционирующие органеллы. Это внутриклеточные пищеварительные вакуоли, в которые проникают ферменты из первичных лизосом, а содержимое для переваривания из клетки. Различают гетерофагосомы и аутофагосомы.

Гетерофагосома формируется в результате слияния первичных лизосом с фагосомой - пузырьком, который образуется при фагоцитозе. В связи с этим содержимое и размеры гетерофагосомы зависят от перевариваемого объекта. Они могут иметь неправильную форму, различную электронную плотность. Содержимое может быть от гомогенного до крупнозернистого с разнообразными включениями. Иногда гетерофагосома имеет вид мультивезикулярных телец в результате поглощения первичной лизосомой эндоцитозных пузырьков, образовавшихся путем микроэндоцитоза. Во вторичной лизосоме происходит внутриклеточное переваривание веществ, поглощенных клеткой. Этот процесс характерен для неспецифических защитных иммунных реакций, которые осуществляются клетками крови - моноцитами (макрофагами) и нейтрофилами. Во вторичных лизосомах также происходит переваривание старых клеток организма, погибших путем апоптоза. Гетерофагосомы переваривают дегенеративно измененные клетки, обеспечивая их отбор в процессе развития (фагоцитоз сперматогенного эпителия, клеток эритробластического ряда и т. д.).

Аутофагосома - результат слияния с первичной лизосомой собственных старых или измененных частей клетки, например митохондрий, элементов цитоскелета и др. Это необходимо для обновления ферментных систем клетки, избавления от поврежденных структур. Аутофагоцитоз - это естественный процесс в жизнедеятельности клетки и жизненно необходим для ее нормального функционирования. В аутофагосомах обнаруживают фрагменты или даже целые цитоплазматические структуры, например митохондрии, элементы цитоплазматической сети, рибосомы, гранулы гликогена и др., что является доказательством их определяющей роли в процессах деградации и замещения.

Функциональное значение аутофагоцитоза в полном объеме еще неясно. Есть предположение, что этот процесс связан с отбором и уничтожением измененных, поврежденных клеточных компонентов. В этом случае лизосомы выполняют функцию внутриклеточных «чистильщиков», убирающих дефектные структуры.

В нормальных условиях число аутофагосом увеличивается при метаболических стрессах, например при гормональной индукции активности клеток печени. Значительно возрастает число аутофагосом при повреждениях клеток, в этом случае аутолизу (самоперевариванию) могут подвергаться целые зоны внутри клеток. При патологических процессах увеличивается число аутофагосом в клетках.

При участии лизосом могут модифицироваться продукты, синтезируемые клеткой. Так, с помощью лизосом в клетках щитовидной железы гидролизируется тироглобулин, что приводит к образованию гормонов трийодтиронина и тетрайодтиронина и смеси аминокислот, которые затем выводятся в кровеносное русло.

Третичная лизосома (остаточное тельце) . Это результат переваривания во вторичной лизосоме. Остаточное тельце можно отнести к лизосомам лишь весьма условно. При полном переваривании пузырек содержит смесь мономеров, которые выделяются путем экзоцитоза в межклеточное вещество. При неполном переваривании образуются различные включения: слоистые, ламеллозные или пластинчатые тельца; гранулы с липофусцином и др. Снижение гидролитической и протеолитической (переваривание белков) активности лизосом сопровождается накоплением веществ внутри клетки и может привести к болезням накопления, сопровождающимся нарушениями структуры и функций клетки.

При болезнях накопления во многих клетках происходят необычные отложения различных веществ: гликогена, муцинов и др. Такие формы клеточной патологии связаны с изменением активности лизосомальных ферментов или с нарушениями сортировки белков в цистернах комплекса Гольджи. Эти нарушения могут быть результатом генных мутаций, а заболевания часто носят наследственный характер.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Клетки, представляющие собой сложные физиологические системы, состоят из множества элементов. Каждому из них присущи индивидуальные свойства. Лизосомами называют клеточные органоиды, размеры которых обычно составляют от 0,2 до 0,4 мкм. Они являются частью мембранной системы клетки, формируясь из эндосом и везикул.

Строение

Особенности строения лизосомы изучены достаточно хорошо. Она содержит внутри себя гидролитические ферменты. В ней имеются гидролазы, отличающиеся возможностью деполимизировать всевозможные вещества - нуклеиновые кислоты, полисахариды, белки, липиды. Перечисленный набор ферментов должен быть надежно изолирован от прочих клеточных органоидов, иначе он попросту разрушит их.

Данные мембранные пузырьки обладают способностью к поглощению и разрушению веществ, являющихся результатом образования вторичных лизосом. Среда в этих органоидах кислая, в отличие от других клеточных элементов, имеющих нейтральную реакцию. Плазматическую мембрану и лизосомы образует пластинчатый механизм. В результате получаются органоиды, называющиеся первичными.

Сверху лизосома, строение и функции которой изучаются в школьной программе, покрыта одномембранной оболочкой, имеющей порою белковый волокнистый слой. В мембране есть набор рецепторов, обеспечивающих процесс сцепления с фагосомами и транспортными пузырьками. С помощью нее происходит беспрепятственное проникновение продуктов пищеварения, но кроме этого, она играет и роль барьера.

Функции

Лизосома выполняет ряд важных функций:

  1. Ликвидация клеточных структур, которые ей не нужны. При этом новые органоиды заменяют старые. Также в процессе аутофагии уничтожаются вещества, образовавшиеся внутри физиологической системы.
  2. Ликвидация вредных бактерий и веществ, поступивших во время эндоцитоза.
  3. Полное переваривание клетки. Данную способность нельзя назвать патологией, так как она приводит к дифференцировке клеток, общему развитию организма. Самый яркий пример тому - появление лягушки из головастика.

Переваривание захваченных во время фагоцитоза внеклеточных веществ именуется гетерофагией. Это основная функция лизосом. Данный процесс у значительного количества простейших организмов служит ключевым методом пищеварения. Внутри многоклеточных существ такая способность присутствует у микрофагов и лейкоцитов. Они поглощают ненужные и чужеродные структуры, осуществляя эффективную защиту.

Если лизосома утратила способность к гетерофагии, то она становится остаточным тельцем. В ней отсутствуют полезные ферменты, зато имеется много непереваренного материала.

Особенности

Особенности строения лизосомы обуславливают то, что она может локализовать в себе вторичные метаболиты, белки, пигменты и ионы в растениях. Если ее деятельность нарушена, то пострадает весь организм. Сбои будут способствовать появлению и развитию различных болезней. Так, когда мембранные пузырьки лопаются, ферменты, содержащиеся в них, попадают в гиалоплазму (подобное случается при некрозах, а также вследствие излучения). Разрывы приводят к чрезмерной активности гидролаз.

Лизосома, строение и функции которой могут иметь различные вариации, обладает порой разным химическим составом и структурой, формой и размерами. Она присутствует в клетках не только растений, животных, но и грибов, участвуя в аутофагоцитозе и переваривании твердых частиц.

Виды

Лизосома, строение и функции которой мы рассматриваем, имеет четыре разновидности:

  • Первичные. Имеют вид пузырьков, внутри которых присутствует бесструктурное вещество и гидролазы. Они отличаются очень маленькими размерами, поэтому их можно спутать с мельчайшими вакуолями в зоне АГ.
  • Вторичные. Образуются из первичных путем их слияния с пиноцитарными и фагоцитарными вакуолями. При этом мембранные пузырьки будут расщеплять содержимое последних.
  • Аутофагосомы. Могут встречаться в простейших организмах. Они являются видом вторичных лизосом, но отличаются от них тем, что включают в себя части цитоплазматических структур. Образование лизосом, называющихся аутофагосомами, до сих пор полностью не ясно. Существует предположение, что данный процесс связывается с ликвидацией сложных элементов клетки.
  • Остаточные тельца. Если обменные процессы не достигают своего завершения, то внутри мембранных пузырьков происходит накопление продуктов, которые переварены не до конца. Тогда образуются остаточные тельца. В них ферменты присутствуют в меньшем количестве. Содержимое уплотняется и переотрабатывается.

Значение

Лизосома, строение и функции которой зависят от ее вида, может иметь для организма разное значение. Если она начинает работать неправильно, то в организме возникают отклонения. При этом развивается болезнь Тея-Сакса, Помпе, Гоше, а также другие наследственные патологии. Наличие поврежденных частиц приводит к различным воспалениям.

Таким образом, лизосомам принадлежит важнейшая роль в нормальном функционировании клеток. Они присутствуют практически в каждом организме, принимая участие в автолизе, аутофагии и переваривании вредных веществ. Нарушения же в этих частицах вызывают множество тяжелых заболеваний.