Вращение тела вокруг неподвижной оси уравнение движения. Вращение твёрдого тела вокруг неподвижной оси. Момент силы и момент инерции

Рис. 6.4

Такое движение тела, при котором какие- нибудь две его точки и В на рис. 6.4) остаются неподвижными, называют вращением вокруг неподвижной оси.

Можно показать, что в этом случае неподвижной остаётся любая точка тела, лежащая на прямой, соединяющей точки Aw В.

Ось, проходящую через эти точки, называют осью вращения тела; её положительное направление выбирается произвольно (рис. 6.4).

Любая точка М тела, не лежащая на оси вращения, описывает окружность, центр которой расположен на оси вращения (рис. 6.4).

Положение тела с неподвижной осью вращения z (рис. 6.5) можно описать при помощи всего лишь одного скалярного параметра - угла поворота (р . Это угол между двумя плоскостями проведенными через ось вращения: неподвижной плоскостью N и подвижной - Р, жестко связанной с телом (рис. 6.5). За положительное примем направление отсчета угла противоположное движению часовой стрелки, если смотреть с конца оси z. (указано дуговой стрелкой на рис. 6.5). Единица измерения угла в системе СИ - 1 радиан « 57,3°. Функциональная зависимость угла поворота от времени

полностью определяет вращательное движение тела вокруг неподвижной оси. Поэтому равенство (6.3) называют уравнением вращения твердого тела вокруг неподвижной оси.

Быстроту вращения тела характеризует угловая скорость со тела, которая определяется как производная угла поворота по времени

и имеет размерность рад/с (или с"").

Второй кинематической характеристикой вращательного движения является угловое ускорение - производная угловой скорости тела:

Размерность углового ускорения - рад/с 2 (или с ~ 2).

Замечание. Символами со и? в этой лекции обозначаются алгебраические значения угловой скорости и углового ускорения. Их знаки указывают направление вращения и его характер (ускоренное или замедленное). Например, если со = ф > 0 , то угол со временем увеличивается и, следовательно, тело вращается в направлении отсчета (р.

Скорость и ускорение каждой точки вращающегося тела нетрудно связать с его угловой скоростью и угловым ускорением. Рассмотрим движение произвольной точки М тела (рис. 6.6).

Поскольку её траектория - окружность, то дуговая координата.9 точки М после поворота тела на угол будет

где h - расстояние от точки М до оси вращения (рис. 6.6).

Дифференцируя по времени обе части этого равенства, получим с учетом (5.14) и (6.4):

где г г - проекция скорости точки на касательную г, направленную в сторону отсчета дуги.v и угла

Величина нормального ускорения точки М согласно (5.20) и (6.6) будет

а проекция её касательного ускорения на касательную г согласно (5.19) и (6.5)

Модуль полного ускорения точки М

Направления векторов v, а, а„ , а, для случая, когда ф> 0 и ф > 0, показаны на рис. 6.7.

Пример 1. Механизм передачи состоит из колес / и 2, которые связаны в точке К так, что при их вращении взаимное проскальзывание отсутствует. Уравнение вращения колеса 1:

положительное направление отсчета угла указано дуговой стрелкой на рис. 6.8.

Известны размеры механизма: Г = 4 см, R 2 = 6 см, г 2 = 2 см.

Найти скорость и ускорение точки М колеса 2 для момента времени /| = 2 с.

Решение. При движении механизма колеса 1 и 2 вращаются вокруг неподвижных осей, проходящих через точки 0 и 0 2 перпендикулярно плоскости рис. 6.8. Находим угловую скорость и угловое ускорение колеса I в момент времени / = 2 с, используя данные выше определения (6.4) и (6.5) этих величин:

Их отрицательные знаки указывают на то, что в момент времени t - 2 с колесо / вращается по ходу часовой стрелки (противоположно направлению отсчета угла ) и это вращение ускоренное. Благодаря отсутствию взаимного проскальзывания колес I и 2 векторы скоростей их точек в месте соприкосновения К должны быть равными. Выразим модуль этой скорости через угловые скорости колес, используя (6.6):

Из последнего равенства выражаем модуль угловой скорости колеса 2 и находим его значение для указанного момента времени 6 = 2 с:

Направление скорости к (рис. 6.9) указывает, что колесо 2 вращается против хода часовой стрелки и, следовательно, оь > 0. Из (6.10) и последнего неравенства видно, что угловые скорости колес отличаются на постоянный отрицательный множитель (- г1г 2): со 2 = г { /г 2). Но тогда и производные этих скоростей - угловые ускорения колес должны отличаются на такой же множитель: е 2 =? ] (-г ] /г 1)=-2- (-4/2) = 4с~ 2 .

Находим величины скорости и ускорения точки М ступенчатого колеса 2 при помощи формул (6.6) - (6.9):

Направления векторов v и, а, а д/ показаны на рис. 6.9.

Кинематика твердого тела

В отличие от кинематики точки в кинематике твердых тел решаются две основные задачи:

Задание движения и определение кинематических характеристик тела в целом;

Определение кинематических характеристик точек тела.

Способы задания и определения кинематических характеристик зависят от типов движения тел.

В настоящем пособии рассматриваются три типа движения: поступательное, вращательное вокруг неподвижной оси и плоско-параллельное движение твердого тела

Поступательное движение твердого тела

Поступательным называют движение, при котором прямая, проведенная через две точки тела, остается параллельной ее первоначальному положению (рис.2.8).

Доказана теорема: при поступательном движении все точки тела движутся по одинаковым траекториям и имеют в каждой момент времени одинаковые по модулю и направлению скорости и ускорения (рис.2.8).

Вывод: Поступательное движение твердого тела определяется движением любой его точки, в связи с чем, задание и изучение его движения сводится к кинематике точки.

Рис. 2.8 Рис. 2.9

Вращательное движение твердого тела вокруг неподвижной оси.

Вращательным вокруг неподвижной оси называют движение твердого тела, при котором две точки, принадлежащие телу, остаются неподвижными в течение всего времени движения.

Положение тела определяется углом поворота (рис.2.9). Единица измерения угла - радиан. (Радиан - центральный угол окружности, длина дуги которого равна радиусу, полный угол окружности содержит 2 радиана.)

Закон вращательного движения тела вокруг неподвижной оси = (t). Угловую скорость и угловое ускорение тела определим методом дифференцирования

Угловая скорость, рад/с; (2.10)

Угловое ускорение, рад/с 2 (2.11)

При вращательном движении тела вокруг неподвижной оси его точки, не лежащие на оси вращения, движутся по окружностям с центром на оси вращения.

Если рассечь тело плоскостью перпендикулярной оси, выбрать на оси вращения точку С и произвольную точка М, то точка М будет описывать вокруг точки С окружность радиуса R (рис. 2.9). За время dt происходит элементарный поворот на угол, при этом точка М совершит перемещение вдоль траектории на расстояние.Определим модуль линейной скорости:

Ускорение точки М при известной траектории определяется по его составляющим, см.(2.8)

Подставляя в формулы выражение (2.12) получим:

где: - тангенциальное ускорение,

Нормальное ускорение.

Плоско - параллельное движение твердого тела

Плоскопараллельным называется движение твердого тела, при котором все его точки перемещаются в плоскостях, параллельных одной неподвижной плоскости (рис.2.10). Для изучения движения тела достаточно изучить движение одного сечения S этого тела плоскостью, параллельной неподвижной плоскости. Движение сечения S в своей плоскости можно рассматривать как сложное, состоящее из двух элементарных движений: а) поступательного и вращательного; б) вращательного относительно подвижного (мгновенного) центра.

В первом варианте движение сечения может быть задано уравнениями движения одной его точки (полюса) и вращением сечения вокруг полюса (рис.2.11). В качестве полюса может быть принята любая точка сечения.

Рис. 2.10 Рис. 2.11

Уравнения движения запишутся в виде:

Х А = Х А (t)

Y А = Y А (t) (2.14)

А = А (t)

Кинематические характеристики полюса определяют из уравнений его движения.

Скорость любой точки плоской фигуры, движущейся в своей плоскости слагается из скорости полюса (произвольно выбранной в сечении точки А ) и скорости вращательного движения вокруг полюса (вращение точки В вокруг точки А ).

Ускорение точки движущейся плоской фигуры складывается из ускорения полюса относительно неподвижной системы отсчета и ускорения за счет вращательного движения вокруг полюса.

Во втором варианте движение сечения рассматривается как вращательное вокруг подвижного (мгновенного) центра P (рис.1.12). В этом случае скорость любой точки В сечения будет определяться по формуле для вращательного движения

Угловая скорость вокруг мгновенного центра Р может быть определена если известна скорость какой либо точки сечения, например точки А.

Рис.2.12

Положение мгновенного центра вращения может быть определено на основании следующих свойств:

Вектор скорости точки перпендикулярен радиусу;

Модуль скорости точки пропорционален расстоянию от точки до центра вращения (V= R ) ;

Скорость в центре вращения равна нулю.

Рассмотрим некоторые случаи определения положения мгновенного центра.

1. Известны направления скоростей двух точек плоской фигуры (рис.2.13). Проведем линии радиусов. Мгновенный центр вращения Р находится на пересечении перпендикуляров, проведенных к векторам скоростей.

2. Скорости точек А и В известны, причем вектора и параллельны друг другу, а линия АВ перпендикулярна (рис. 2. 14). В этом случае мгновенный центр вращения лежит на линии АВ . Для его нахождения проведем линию пропорциональности скоростей на основании зависимости V= R .

3. Тело катится без скольжения по неподвижной поверхности другого тела (рис.2.15). Точка касания тел в данный момент имеет нулевую скорость в то время, как скорости других точек тела не равны нулю. Точка касания Р будет мгновенным центром вращения.

Рис. 2.13 Рис. 2.14 Рис. 2.15

Кроме рассмотренных вариантов скорость точки сечения может быть определена на основании теоремы о проекциях скоростей двух точек твердого тела.

Теорема: проекции скоростей двух точек твердого тела на прямую, проведенную через эти точки, равны между собой и одинаково направлены .

Доказательство: расстояние АВ изменяться не может, следовательно,

V А cos не может быть больше или меньше V В cos (рис.2.16).

Рис. 2.16

Вывод: V А cos =V В cos. (2.19)

Сложное движение точки

В предыдущих параграфах рассматривалось движение точки относительно неподвижной системы отсчета, так называемое абсолютное движение. В практике встречаются задачи, в которых известно движение точки относительно системы координат, которая движется относительно неподвижной системы. При этом требуется определить кинематические характеристики точки относительно неподвижной системы.

Принято называть: движение точки относительно подвижной системы - относительным , движение точки вместе с подвижной системой - переносным , движение точки относительно неподвижной системы - абсолютным . Соответственно называют скорости и ускорения:

Относительные;- переносные; -абсолютные.

Согласно теореме о сложении скоростей абсолютная скорость точки равна векторной сумме относительной и переносной скоростей (рис.).

Абсолютное значение скорости определяется по теореме косинусов

Рис.2.17

Ускорение по правилу параллелограмма определяется только при поступательном переносном движении

При непоступательном переносном движении появляется третья составляющая ускорения, называемое поворотным или кориолисовым.

Кориолисово ускорение численно равно

где - угол между векторами и

Направление вектора кориолисова ускорения удобно определять по правилу Н.Е. Жуковского: вектор спроектировать на плоскость, перпендикулярную оси переносного вращения, проекцию повернуть на 90 градусов в сторону переносного вращения. Полученное направление будет соответствовать направлению кориолисова ускорения.

Вопросы для самоконтроля по разделу

1. В чем состоят основные задачи кинематики? Назовите кинематические характеристики.

2. Назовите способы задания движения точки и определение кинематических характеристик.

3. Дайте определение поступательного, вращательного вокруг неподвижной оси, плоскопараллельного движения тела.

4. Как задается движение твердого тела при поступательном, вращательном вокруг неподвижной оси и плоскопараллельном движении тела и как определяется скорость и ускорение точки при этих движениях тела?

В природе и технике мы часто сталкиваемся с проявлением вращательного движения твердых тел, например, валов и шестерен. Как в физике описывают этот тип движения, какие формулы и уравнения для этого применяются, эти и другие вопросы освещаются в данной статье.

Что такое вращение?

Каждый из нас интуитивно представляет, о каком движении пойдет речь. Вращение - это процесс, при котором тело или материальная точка движется по круговой траектории вокруг некоторой оси. С геометрической точки зрения твердого тела - это прямая, расстояние до которой в процессе перемещения остается неизменным. Это расстояние называют радиусом вращения. Далее будем обозначать его буквой r. Если ось вращения проходит через центр масс тела, то ее называют собственной осью. Примером вращения вокруг собственной оси является соответствующее движение планет Солнечной системы.

Чтобы вращение происходило, должно существовать центростремительное ускорение, которое возникает за счет центростремительной силы. Эта сила направлена от центра масс тела к оси вращения. Природа центростремительной силы может быть самой разной. Так, в космическом масштабе ее роль выполняет гравитация, если тело закреплено нитью, то сила натяжения последней будет центростремительной. Когда тело вращается вокруг собственной оси, роль центростремительной силы играет внутреннее электрохимическое взаимодействие между составляющими тело элементами (молекулами, атомами).

Необходимо понимать, что без присутствия центростремительной силы тело будет двигаться прямолинейно.

Описывающие вращение физические величины

Во-первых, это динамические характеристики. К ним относятся:

  • момент импульса L;
  • момент инерции I;
  • момент силы M.

Во-вторых, это кинематические характеристики. Перечислим их:

  • угол поворота θ;
  • скорость угловая ω;
  • ускорение угловое α.

Кратко опишем каждую из названных величин.

Момент импульса определяется по формуле:

Где p - линейный импульс, m - масса материальной точки, v - ее линейная скорость.

Момент инерции материальной точки рассчитывается с помощью выражения:

Для любого тела сложной формы величина I рассчитывается, как интегральная сумма моментов инерции материальных точек.

Момент силы M вычисляется так:

Здесь F - внешняя сила, d - расстояние от точки ее приложения до оси вращения.

Физический смысл всех величин, в названии которых присутствует слово "момент", аналогично смыслу соответствующих линейных величин. Например, момент силы показывает возможность приложенной силы сообщить системе вращающихся тел.

Кинематические характеристики математически определяются следующими формулами:

Как видно из этих выражений, угловые характеристики аналогичны по своему смыслу линейным (скорости v и ускорению a), только они применимы для круговой траектории.

Динамика вращения

В физике изучение вращательного движения твердого тела осуществляется с помощью двух разделов механики: динамики и кинематики. Начнем с динамики.

Динамика изучает внешние силы, действующие на систему вращающихся тел. Сразу запишем уравнение вращательного движения твердого тела, а затем, разберем его составные части. Итак, это уравнение имеет вид:

Который действует на систему, обладающую моментом инерции I, вызывает появление углового ускорения α. Чем меньше величина I, тем легче с помощью определенного момента M раскрутить систему до больших скоростей за малые промежутки времени. Например, металлический стержень легче вращать вдоль его оси, чем перпендикулярно ей. Однако, тот же стержень легче вращать вокруг оси, перпендикулярной ему, и проходящей через центр масс, чем через его конец.

Закон сохранения величины L

Выше была введена эта величина, она называется моментом импульса. Уравнение вращательного движения твердого тела, представленное в предыдущем пункте, часто записывают в иной форме:

Если момент внешних сил M действует на систему в течение времени dt, то он вызывает изменение момента импульса системы на величину dL. Соответственно, если момент сил равен нулю, тогда L = const. Это и есть закон сохранения величины L. Для нее, используя связь между линейной и угловой скоростью, можно записать:

L = m*v*r = m*ω*r 2 = I*ω.

Таким образом, при отсутствии момента сил произведение угловой скорости и момента инерции является постоянной величиной. Этот физический закон используют фигуристы в своих выступлениях или искусственные спутники, которые необходимо повернуть вокруг собственной оси в открытом космосе.

Центростремительное ускорение

Выше, при изучении вращательного движения твердого тела, уже была описана эта величина. Также была отмечена природа центростремительных сил. Здесь лишь дополним эту информацию и приведем соответствующие формулы для расчета этого ускорения. Обозначим его a c .

Поскольку центростремительная сила направлена перпендикулярно оси и проходит через нее, то момента она не создает. То есть эта сила не оказывает совершенно никакого влияния на кинематические характеристики вращения. Тем не менее, она создает центростремительное ускорение. Приведем две формулы для его определения:

Таким образом, чем больше угловая скорость и радиус, тем большую силу следует приложить, чтобы удержать тело на круговой траектории. Ярким примером этого физического процесса является занос автомобиля во время поворота. Занос возникает, если центростремительная сила, роль которой играет сила трения, становится меньше, чем центробежная сила (инерционная характеристика).

Три основные кинематические характеристики были перечислены выше в статье. твердого тела формулами следующими описывается:

θ = ω*t => ω = const., α = 0;

θ = ω 0 *t + α*t 2 /2 => ω = ω 0 + α*t, α = const.

В первой строке приведены формулы для равномерного вращения, которое предполагает отсутствие внешнего момента сил, действующего на систему. Во второй строке записаны формулы для равноускоренного движения по окружности.

Отметим, что вращение может происходить не только с положительным ускорением, но и с отрицательным. В этом случае в формулах второй строки следует перед вторым слагаемым поставить знак минус.

Пример решения задачи

На металлический вал в течение 10 секунд действовал момент силы 1000 Н*м. Зная, что момент инерции вала равен 50 кг*м 2 , необходимо определить угловую скорость, которую придал валу упомянутый момент силы.

Применяя основное уравнение вращения, вычислим ускорение вала:

Поскольку это угловое ускорение действовало на вал в течение времени t = 10 секунд, то для вычисления угловой скорости применяем формулу равноускоренного движения:

ω = ω 0 + α*t = M/I*t.

Здесь ω 0 = 0 (вал не вращался до действия момента сил M).

Подставляем в равенство численные значения величин, получаем:

ω = 1000/50*10 = 200 рад/с.

Чтобы это число перевести в привычные обороты в секунду, необходимо его поделить на 2*pi. Выполнив это действие, получаем, что вал будет вращаться с частотой 31,8 об./с.

Вращением твёрдого тела вокруг неподвижной оси называется такое его движение, при котором две точки тела остаются неподвижными в течение всего времени движения. При этом также остаются неподвижными все точки тела, расположенные на прямой, проходящей через его неподвижные точки. Эта прямая называется осью вращения тела .

Пусть точки A и B неподвижны. Вдоль оси вращения направим ось . Через ось вращения проведём неподвижную плоскость и подвижную , скреплённую с вращающимся телом (при ).

Положение плоскости и самого тела определяется двугранным углом между плоскостями и . Обозначим его . Угол называется углом поворота тела .

Положение тела относительно выбранной системы отсчета однозначно определяется в любой момент времени, если задано уравнение , где - любая дважды дифференцируемая функция времени. Это уравнение называется уравнением вращения твёрдого тела вокруг неподвижной оси .

У тела, совершающего вращение вокруг неподвижной оси, одна степень свободы, так как его положение определяется заданием только одного параметра - угла .

Угол считается положительным, если он откладывается против часовой стрелки, и отрицательным - в противоположном направлении. Траектории точек тела при его вращении вокруг неподвижной оси являются окружностями, расположенными в плоскостях перпендикулярных оси вращения.

Для характеристики вращательного движения твердого тела вокруг неподвижной оси введём понятия угловой скорости и углового ускорения.

Алгебраической угловой скоростью тела в какой-либо момент времени называется первая производная по времени от угла поворота в этот момент, то есть .

Угловая скорость является положительной величиной при вращении тела против часовой стрелки, так как угол поворота возрастает с течением времени, и отрицательной - при вращении тела по часовой стрелке, потому что угол поворота при этом убывает.

Размерность угловой скорости по определению:

В технике угловая скорость - это частота вращения, выраженная в оборотах в минуту. За одну минуту тело повернётся на угол , где n - число оборотов в минуту. Разделив этот угол на число секунд в минуте, получим

Алгебраическим угловым ускорением тела называется первая производная по времени от угловой скорости, то есть вторая производная от угла поворота т.е.

Размерность углового ускорения по определению:

Введем понятия векторов угловой скорости и углового ускорения тела.

И , где - единичный вектор оси вращения. Векторы и можно изображать в любых точках оси вращения, они являются скользящими векторами.

Алгебраическая угловая скорость это проекция вектора угловой скорости на ось вращения. Алгебраическое угловое ускорение это проекция вектора углового ускорения скорости на ось вращения.


Если при , то алгебраическая угловая скорость возрастает с течением времени и, следовательно, тело вращается ускоренно в рассматриваемый момент времени в положительную сторону. Направление векторов и совпадают, оба они направлены в положительную сторону оси вращения .

При и тело вращается ускоренно в отрицательную сторону. Направление векторов и совпадают, оба они направлены в отрицательную сторону оси вращения .

Угол поворота, угловая скорость и угловое ускорение

Вращением твердого тела вокруг неподвижной оси называ­ется такое его движение, при котором две точки тела остаются неподвижными в течение всего времени движения. При этом также остаются неподвижными все точки тела, расположенные на прямой, проходящей через его неподвижные точки. Эта прямая называется осью вращения тела.

Если А и В - неподвижные точки тела (рис. 15), то осью вращения является ось Oz, которая может иметь в пространстве любое направление, не обязательно вертикальное. Одно на­правление оси Oz принимается за положительное.

Через ось вращения проведем неподвижную плоскость П о и подвижную П, скрепленную с вращающимся телом. Пусть в начальный момент времени обе плоскости совпадают. Тогда в момент времени t положение подвижной плоскости и самого вращающегося тела можно определить двугран­ным углом между плоскостями и соответствующим линейным углом φ между прямыми, расположенными в этих плоскостях и перпендикулярными оси вращения. Угол φ называется углом поворота тела.

Положение тела относительно выбранной системы отсчета полностью определяется в любой

момент времени, если задано уравнение φ = f(t) (5)

где f(t) - любая, дважды дифференцируемая функция времени. Это уравнение называют уравнением вращения твердого тела вокруг неподвижной оси.

У тела, совершающего вращение вокруг неподвижной оси, одна степень свободы, так как его положение определяется заданием только одного параметра - угла φ .

Угол φ считается положительным, если он откладывается против часовой стрелки, и отрицательным - в противополож­ном направлении, если смотреть с положительного направления оси Oz. Траектории точек тела при его вращении вокруг неподвижной оси являются окружностями, расположенными в плоскостях, перпендикулярных оси вращения.

Для характеристики вращательного движения твердого тела вокруг неподвижной оси введем понятия угловой скорости и углового ускорения. Алгебраической угловой скоростью тела в какой-либо момент времени называют первую производную по времени от угла поворота в этот момент, т. е. dφ/dt = φ. Она является величиной положительной при вращении тела против часовой стрелки, так как угол поворота возрастает с течением времени, и отрицательной - при вращении тела по часовой стрелке, потому что угол поворота при этом убывает.

Модуль угловой скорости обозначают ω. Тогда ω= ׀dφ/dt ׀= ׀φ ׀ (6)

Размерность угловой скорости устанавливаем в соответствии с (6)

[ω] = угол/время = рад/с = с -1 .

Втехнике угловая скорость - это частота вращения, выражен­ная в оборотах в минуту. За 1 мин тело повернется на угол 2πп, если п - число оборотов в минуту. Разделив этот угол на число секунд в минуте, получим: (7)

Алгебраическим угловым ускорением тела называют первую производную по времени от алгебраической скорости, т.е. вторую производную от угла поворота d 2 φ/dt 2 = ω . Модуль углового ускорения обозначим ε , тогда ε=|φ| (8)

Размерность углового ускорения получаем из (8):

[ε ] = угловая скорость/время = рад/с 2 = с -2

Если φ’’>0 при φ’>0 , то алгебраическая угловая скорость возрастает с течением времени и, следовательно, тело вращается ускоренно в рассматриваемый момент времени в положительную сторону (против часовой стрелки). При φ’’<0 и φ’<0 тело вращается ускоренно в отрицательную сторону. Если φ’’<0 при φ’>0 , то имеем замедленное вращение в положительную сторону. При φ’’>0 и φ’<0 , т.е. замедленное вращении совершается в отрицательную сторону. Угловую скорость и угловое ускорение на рисунках изображают дуговыми стрелками вокруг оси вращения. Дуговая стрелка для угловой скорости указывает направление вращения тел;

Для ускоренного вращения дуговые стрелки для угловой скорости и углового ускорения имеют одинаковые направления для замедленного - их направления противоположны.

Частные случаи вращения твердого тела

Вращение называют равномерным, если ω=const, φ= φ’t

Вращение будет равнопеременным, если ε=const. φ’= φ’ 0 + φ’’t и

В общем случае, если φ’’ не постоянно,

Скорости и ускорения точек тела

Известно уравнение вращения твердого тела вокруг непо­движной оси φ= f(t) (рис.16). Расстояние s точки М в по­движной плоскости П по дуге окружности (траектории точки), отсчитываемое от точки М о, расположенной в неподвижной плоскости, выражается через угол φ зависимостью s=hφ , где h -радиус окружности, по которой перемещается точка. Он является кратчайшим расстоянием от точки М до оси враще­ния. Его иногда называют радиусом вращения точки. У каждой точки тела радиус вращения остается неизменным при враще­нии тела вокруг неподвижной оси.

Алгебраическую скорость точки М определяем по формуле v τ =s’=hφ Модуль скорости точки: v=hω (9)

Скорости точек тела при вращении вокруг неподвижной оси пропорциональ­ны их кратчайшим расстояниям до этой оси. Коэффициентом пропорци­ональности является угловая ско­рость. Скорости точек направлены по касательным к траекториям и, сле­довательно, перпендикулярны радиу­сам вращения. Скорости точек тела, расположен­ных на отрезке прямой ОМ, в соот­ветствии с (9) распределены по линей­ному закону. Они взаимно параллельны, и их концы располагаются на одной прямой, проходящей через ось вращения. Ускорение точки разлагаем на ка­сательную и нормальную составля­ющие, т. е. a=a τ +a nτ Касательное и нормальное ускорения вычисляются по формулам (10)

так как для окружности радиус кривизны р=h (рис. 17). Таким образом,

Касательные, нормальные и полные ускорения точек, как и скорости, распределены тоже по линейному закону. Они линейно зависят от расстояний точек до оси вращения. Нормальное ускорение направлено по радиусу окружности к оси вращения. Направление касательного ускорения зависит от знака алгебраического углового ускорения. При φ’>0 и φ’’>0 или φ’<0 и φ’<0 имеем ускоренное вращение тела и направле­ния векторов a τ и v совпадают. Если φ’ и φ’" имеют разные знаки (замедленное вращение), то a τ и v направлены проти­воположно друг другу.

Обозначив α угол между полным ускорением точки и ее радиусом вращения, имеем

tgα = | a τ |/a n = ε/ω 2 (11)

так как нормальное ускорение а п всегда положительно. Угол а для всех точек тела один и тот же. Откладывать его следует от ускорения к радиусу вращения в направлении дуговой стрелки углового ускорения независимо от направления вращения твердого тела.

Векторы угловой скорости и углового ускорения

Введем понятия векторов угловой скорости и углового ускорения тела. Если К - единичный вектор оси вращения, направленный в ее положительную сторону, то векторы угловой скорости ώ и углового ускорения ε определяют выражениями (12)

Так как k -постоянный по мо­дулю и направлению вектор, то из (12) следует, что

ε=dώ/dt (13)

При φ’>0 и φ’’>0 направления векторов ώ и ε совпадают. Они оба направлены в положительную сторону оси вращения Oz (Рис. 18.а)Если φ’>0 и φ’’<0 , то они направлены в противополож­ные стороны (рис.18.б). Вектор углового ускорения совпадает по направлению с вектором угловой скорости при ускоренном вращении и противоположен ему при замедленном. Векторы ώ и ε можно изображать в любых точках оси вращения. Они являются векторами скользящими. Это их свойство следует из векторных формул для скоростей и ускоре­ний точек тела.

Сложное движение точки

Основные понятия

Для изучения некоторых, более сложных видов движений твердого тела целесообразно рассмотреть простейшее сложное движение точки. Во многих задачах движение точки приходится рассматривать относительно двух (и более) систем отсчета, движущихся друг относительно друга. Так, движение космичес­кого корабля, движущегося к Луне, требуется рассматривать одновременно и относительно Земли и относительно Луны, которая движется относительно Земли. Любое движение точки можно считать сложным, состоящим из нескольких движений. Например, движение корабля по реке относительно Земли можно считать сложным, состоящим из движения по воде и вместе с текущей водой.

В простейшем случае сложное движение точки состоит из относительного и переносного движений. Определим эти дви­жения. Пусть имеем две системы отсчета, движущиеся друг относительно друга. Если одну из этих систем O l x 1 y 1 z 1 (рис. 19) принять за основную или неподвижную (ее движение относительно других систем отсчета не рассматривается), то вторая система отсчета Oxyz будет двигаться относительно первой. Движение точки относительно подвижной системы отсчета Oxyz называется относительным. Характеристики этого движения, такие, как траектория, скорость и ускорение, назы­ваются относительными. Их обозначают индексом r; для скорости и ускорения v r , a r . Движение точки относительно основной или неподвижной системны системы отсчета O 1 x 1 y 1 z 1 называется абсолютным (или сложным). Его также иногда называют составным движением. Траектория, скорость и ускорение этого движения называются абсолютными. Скорость и ускорение абсолютного движения обозначают буквами v, a без индексов.


Переносным движением точки называют движение, которое она совершает вместе с подвижной системой отсчета, как точка, жестко скрепленная с этой системой в рассматриваемый момент времени. Вслед­ствие относительного движения движущаяся точка в различные моменты времени совпадает с различными точками тела S, с которым скреплена подвижная система отсчета. Переносной скоростью и переносным ускорением являются скорость и уско­рение той точки тела S, с которой в данный момент совпадает движущаяся точка. Переносные скорость и ускорение обознача­ют v e , а е.

Если траектории всех точек тела S, скрепленного с подвиж­ной системой отсчета, изобразить на рисунке (рис. 20), то получим семейство линий - семейство траекторий переносного движения точки М. Вследствие относительного движения точки М в каждый момент времени она находится на одной из траекторий переносного движения. Точка М может совпадать только с одной точкой каждой из траекторий этого семейства переносных траекторий. В связи с этим иногда считают, что траекторий переносного движения нет, так как приходится считать траекториями переносного движения линии, у которых только одна точка фактически является точкой траектории.

В кинематике точки изучалось движение точки относительно какой-либо системы отсчета независимо от того, движется эта система отсчета относительно других систем или нет. Дополним это изучение рассмотрением сложного движения, в простейшем случае состоящего из относительного и перенос­ного. Одно и то же абсолютное движение, выбирая различные подвижные системы отсчета, можно считать состоящим из разных переносных и соответственно относительных движений.

Сложение скоростей

Определим скорость абсолютного движения точки, если известны скорости относительного и переносного движений этой точки. Пусть точка со­вершает только одно, относи­ тельное движение по отношению к подвижной системе отсчета Oxyz и в момент времени t за­нимает на траектории относи­ тельного движения положение М (рис 20). В момент времени t+ t вследствие относительного Движения точка окажется в по­ложении М 1 , совершив пере­мещение ММ 1 по траектории относительного движения. Пред­положим, что точка участвует Oxyz и относительной траекторией она переместится по некоторой кривой на ММ 2. Если точка участвует одновременно и в относительном и в переносном движениях, то за время А; она переместится на ММ" по траектории абсолютного движения и в момент времени t+At займет положение М". Если время At мало и в дальнейшем переходят к пределу при At, стремящемся к нулю, то малые перемещения по кривым можно заменить отрезками хорд и принять их за векторы перемещений. Складывая векторные пе­ремещения, получаем

В этом отношении отброшены малые величины более высокого порядка, стремящиеся к нулю при At, стремящемся к нулю. Переходя к пределу, имеем (14)

Следовательно, (14) примет форму (15)

Получена так называемая теорема сложения скоростей: скорость абсолютного движения точки равна векторной сумме скоростей переносного и относительного движений этой точки. Так как в общем случае скорости переносного и относительного движений не перпендикулярны, то (15’)


Похожая информация.