Природа электромагнитных волн. Электромагнитные волны. Мотивация учебной и познавательной деятельности

), описывающей электромагнитное поле, теоретически показал, что электромагнитное поле в вакууме может существовать и в отсутствие источников - зарядов и токов. Поле без источников имеет вид волн, распространяющихся с конечной скоростью, которая в вакууме равна скорости света: с = 299792458±1, 2 м/с. Совпадение скорости распространения электромагнитных волн в вакууме с измеренной ранее скоростью света позволило Максвеллу сделать вывод о том, что свет представляет собой электромагнитные волны. Подобное заключение в дальнейшем легло в основу электромагнитной теории света.

В 1888 году теория электромагнитных волн получила экспериментальное подтверждение в опытах Г. Герца . Используя источник высокого напряжения и вибраторы (см. Герца вибратор), Герцу удалось выполнить тонкие эксперименты по определению скорости распространения электромагнитной волны и ее длины. Экспериментально подтвердилось, что скорость распространения электромагнитной волны равна скорости света, что доказывало электромагнитную природу света.

Электромагнитные волны - электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью, зависящей от свойств среды. Электромагнитной волной называют распространяющееся электромагнитное поле.

Переоценить значение электромагнитных волн в плане их применения в работе современной техники практически невозможно. Области применения: Радиопередачи. Телевещание Мобильнаясвязь Wi-fi и Bluetooth. Бытовая техника

Применение электромагнитных волн в быту Источниками низкочастотных излучений (0 — 3 к. Гц) являются все системы производства, передачи и распределения электроэнергии (линии электропередачи, трансформаторные подстанции, электростанции, различные кабельные системы), домашнюю и офисную электро- и электронную технику, в том числе и мониторы ПК, транспорт на электроприводе, ж/д транспорт и его инфраструктуру, а также метро, троллейбусный и трамвайный транспорт.

Источники высокочастотных излучений (от 3 к. Гц до 300 ГГц) включают в себя функциональные передатчики — источники электромагнитного поля в целях передачи или получения информации. Это коммерческие передатчики (радио, телевидение), радиотелефоны (авто-, радиотелефоны, радио СВ, любительские радиопередатчики, производственные радиотелефоны), направленная радиосвязь (спутниковая радиосвязь, наземные релейные станции), навигация (воздушное сообщение, судоходство, радиоточка), локаторы (воздушное сообщение, судоходство, транспортные локаторы, контроль за воздушным транспортом).

Источником электромагнитного поля в жилых помещениях является разнообразная электротехника — холодильники, утюги, пылесосы, электропечи, телевизоры, компьютеры и др. , а также электропроводка квартиры. На электромагнитную обстановку квартиры влияют электротехническое оборудование здания, трансформаторы, кабельные линии. Электрическое поле в жилых домах находится в пределах 1 -10 В/м. Однако могут встретиться точки повышенного уровня, например, незаземленный монитор компьютера.

Рентгеновское излучение (синоним рентгеновские лучи) - это электромагнитное излучение с широким диапазоном длин волн (от 8· 10 -6 до 10 -12 см).

Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.

Вывод Бурное развитие отраслей народного хозяйства привело к использованию во всех промышленных производствах, в медицине и в быту электромагнитных волн. Причем в ряде случаев человек оказывается подвержен их воздействию. Шелепало К. Дмитрийчук В. 11 -А


Все волновые процессы описываются с помощью однотипных математических уравнений. Свойства, проявляемые волнами, также одинаковы и присущи волнам любой природы.

К важнейшим волновым свойствам относятся интерференция и дифракция.

Интерференция – наложение двух волн, при котором происходит устойчивое во времени усиление волн в одних точках пространства и ослабление – в других. Интерференцией объясняются, например, радужные полосы на мыльных пузырях, поверхностях луж, на крыльях насекомых.

Необходимое условие образования и устойчивости интерференционной картины – когерентность волн, т.е. точное совпадение их частот и постоянство во времени амплитуд. Равенство амплитуд не обязательно, оно влияет только на контрастность картины.

Естественные источники волн не являются когерентными, для получения с их помощью интерференционной картины приходится прибегать к различным приемам – разделять волну от одного источника на части. Высокую степень когерентности имеет излучение лазеров.

Дифракция – явление, состоящее в огибании волной пространственных неоднородностей. Волна, таким образом, попадает в область геометрической тени. Для того, чтобы наблюдалась дифракция, необходимо, чтобы размеры неоднородностей были сравнимы с длиной волны: d ~ l . Так, волна от брошенного в воду камня испытает дифракцию на свае или камне, выступающих над поверхностью воды, но «не заметит» тонкого стебля осоки.

Интерференция и дифракция – типично волновые свойства. Верно и обратное: если наблюдаются эти явления, то объект можно с уверенностью считать волной. Эти утверждения оказались чрезвычайно плодотворными при изучении явлений микромира.

Электромагнитные волны в природе и технике.

Нагляднее всего мы представляем себе волны, когда говорим о волнах на воде. Однако даже их мы видим благодаря электромагнитным волнам – свету. В природе и технике это – самые распространенные волны благодаря очень широкому диапазону возможных частот и длин волн. Порождаются электромагнитные волны всегда электрическим зарядами, которые движутся неравномерно (т.е. с ускорением). Электромагнитные волны всегда поперечны.

Приведем шкалу электромагнитных волн , обозначив их происхождение. Границы участков шкалы достаточно условны, вопрос о том, к какому типу отнести волну, решается прежде всего ее природой.

· Радиоволны 10 км > l > 1 мм – порождаются переменным электрическим током. Диапазон 1 м > l > 1 мм называется микроволнами (волнами СВЧ).

· Оптические волны 1 мм > l > 1 нм – порождаются хаотическим тепловым движением молекул, переходами электронов внутри атомов.

· Рентгеновские волны 10 -8 м > l > 10 -12 м возникают при торможении электронов в веществе.

· Гамма-излучение l < 10 -11 м возникает при ядерных реакциях.

Оптический диапазон длин волн делится на инфракрасную (ИК-), видимую и ультрафиолетовую (УФ-) области . Человеческий глаз воспринимает узкую часть спектра: 0.78 мкм > l > 0.38 мкм. Лучше всего человек воспринимает l = 555 нм (желто-зеленый свет).

Автоволны.

Особый тип волн может существовать в активных средах или в средах, поддерживаемых энергетически. За счет внутренних источников среды или за счет подпитки энергией извне волна может распространяться без затухания и без изменения своих характеристик . Такие самоподдерживающиеся волны в нелинейных средах получили название автоволн (Р.В.Хохлов).

Автоволны были открыты при реакциях горения, при передаче возбуждения по нервным волокнам, мышцам, сетчатке глаза, при анализе численности биологических популяций и т.д.

Обязательным условием существования автоволн является нелинейность среды, т.е. зависимость свойств среды от характеристик волны. Волна как бы сама определяет количество энергии, необходимое для поддержания ее характеристик, и тем самым осуществляет обратную связь .

Лекция 10.

Законы микромира. Корпускулярно-волновой дуализм материи. Принцип дополнительности и проблемы причинности.

Гипотеза квантов энергии М.Планка.

Волновые свойства, присущие свету, были известны уже давно, с XVII века. Тем не менее лишь во 2-й половине ХIХ в. было окончательно доказано, что свет – это электромагнитная волна.

Однако существовал ряд явлений, которые не удавалось объяснить с позиций волновой природы света. Среди этих явлений – давление света , который легко демонстрируется на опыте, и фотоэффект , детально изученный П.Н.Лебедевым. Фотоэффект состоит в выбивании светом с поверхности металла электронов; появляется электрический ток, называемый фототоком. Закономерности фотоэффекта таковы, что вызывающее его излучение естественнее рассматривать как поток неких частиц, нежели как волну.

Еще одна проблема, которую не удавалось разрешить исходя из волновой теории света, получила у современников название «ультрафиолетовая катастрофа». Волновая теория предсказывает, что энергия теплового излучения (т.е. электромагнитной волны, испускаемой любым телом вследствие теплового движения его молекул) должна быть тем больше, чем больше его частота. Значит, в УФ диапазоне длин волн должно излучаться столько энергии, что тело потратит всю свою энергию на тепловое излучение. Эксперимент же показывал полное расхождение с классической волновой теорией. Реальное тепловое излучение зависит от частоты не монотонно, имеется частота, на которой интенсивность излучения максимальна, при высоких и низких частотах она стремится к 0. Следовательно, классическая волновая теория неадекватно описывала тепловое излучение.

В 1900 г. М.Планк выдвинул гипотезу, согласно которой нагретое тело излучает энергию не непрерывно, а отдельными порциями, которые в 1905 г. получили название кванты . Энергия одного кванта пропорциональна частоте излучения:

постоянная h = 6.63 10 -34 Дж с, ћ = ћ/2p = 1.055 10 -34 Дж с – постоянные Планка. (Заметим, что размерность ћ совпадает с размерностью момента импульса. Величину ћ называют иногда «квантом действия»).

Постоянная Планка – одна из фундаментальных физических констант. Наш мир таков, каков он есть, в частности, потому, что ћ имеет именно такое, а не какое-то иное значение.

Таким образом, волна, которая ранее считалась непрерывной, была представлена в дискретном виде. Эта гипотеза оказалась весьма плодотворной и позволила количественно описать тепловое излучение в полном соответствии с экспериментом. В развитие гипотезы Планка было предположено, что волна не только испускается, но и распространяется и поглощается в виде квантов. Однако было непонятно, является ли дискретный характер излучения свойством самого излучения или это – результат его взаимодействия с веществом. Первым, кто понял, что дискретность – неотъемлемое свойство излучения, - был Эйнштейн, применивший это представление при исследовании фотоэффекта.

Существование электромагнитных волн было предсказано теоретически Максвеллом как прямое следствие из уравнений электромагнитного поля. Скорость электромагнитных волн в вакууме оказалась равной величине . Её числовые значения почти совпало со скоростью света в вакууме, равной, по измерениям Физо в 1849 г. 3,15× 108 м/с. Другое важное совпадение в свойствах электромагнитных волн и света обусловлено поперечностью волн. Поперечность электромагнитных волн следует из уравнений Максвелла, а поперечность световых волн – из экспериментов по поляризации света (Юнг 1817г.). Эти два факта привели Максвелла к заключению, что свет представляет собой электромагнитные волны.

Уравнения Максвелла для вакуума при отсутствии токов (J = 0) и зарядов (r = 0) и имеют следующий вид

Где e0 и m0 – соответственно электрическая и магнитная постоянные. Уравнение (1) показывает, что магнитное поле порождается переменным электрическим полем. Уравнение (2) представляет собой математическую формулировку закона электромагнитной индукции. Следующее уравнение выражает факт отсутствия статического электрического поля в вакууме. Уравнение (4) постулирует отсутствие магнитных зарядов. Применяя к обеим частям уравнения (1) операцию Rot , получаем

, (6)

Где учтены соотношения (5) и принято во внимание, что порядок дифференцирования по независимым переменным (пространственным координатам и времени) можно изменить. Применяя известное из векторного анализа соотношение для дифференциальных операторов, запишем

Здесь D – оператор Лапласа, который в декартовых координатах записывается в виде

Поскольку в рассмотренном случае то из соотношения (6) с учётом уравнения (2) получаем уравнение для вектора :

, (7)

Где — скорость света в вакууме.

Аналогично, применяя операцию rot к обеим частям равенства (2), получим уравнение для оператора :

(8)

Уравнения (7), (8) линейны по полю. Поэтому они эквивалентны совокупности скалярных уравнений такого же вида, в каждое из которых входит только одна декартова компонента напряжённости электрического или магнитного поля

и (a = x, y, Z ) (9)

Уравнения (7), (8), (9) называются волновыми уравнениями. Их решения имеют характер распространяющихся волн.

Плоская волна.

Предположим, что произвольная компонента поля Ф (например, Еα или Нα) зависит лишь от одной пространственной координаты, например Z , и времени, т. е. Ф = Ф(Z ,T ). Тогда уравнение (9) упростится и примет вид

(10)

Уравнению (10) удовлетворяет функция вида:

Где Ф1 и Ф2 – произвольные (дифференцируемые) функции своих аргументов.

Формула (11) выражает общее решение уравнения (10). Она описывает суперпозицию двух волн. Первая из них распространяется вдоль, а вторая – против оси Z . Скорости обеих волн одинаковы и равны С . Действительно, возмущение Ф1, находившееся в момент времени T 1в точке Z 1, в момент T 2 приходит в точку Z 2, определяемую соотношением T 1 – z1/c = t2 – Z 2/C . Отсюда при T 2 > T 1 имеем z2 > z1 и скорость распространения волнового возмущения равна V = (z2 – z1)/(t2 – t1) = c.

Функции Ф1 = Ф(Z , T ) и Ф2 = Ф2(Z , T ) описывают плоские волны, так как волновое возмущение имеет одно и то же значение во всех точках бесконечной плоскости, перпендикулярной направлению распространения. Конкретный вид функций Ф1 и Ф2 определяется начальными и граничными условиями задачи.

Конкретизируем закон изменения светового поля во времени и в пространстве. Рассмотрим, например, декартову компоненту поля E (Z , T ). Пусть при Z = 0 E (0, T ) = А Cos(wt), т. е. напряжённость светового поля изменяется по гармоническому закону. Тогда в соответствии с (11) в области с Z ≥0 будет распространятся плоская гармоническая волна

В этом выражении Е 0 – амплитуда волны, w - круговая частота, связанная с периодом Т и частотой колебаний n = 1/Т соотношениями

Параметры K и Z , определяемые как

Есть соответственно волновое число и длина волны. Величина j = wT Kz называется полной фазой волны и зависит от T и Z . Фазу j = Kz , связанную с изменением пути, пройденного волной, называют набегом фазы или фазовым сдвигом.

Геометрическое место точек с одинаковым значением фазы называют волновым фронтом. В плоской гармонической волне волновой фронт представляет собой плоскость, перпендикулярную направлению распространения.

Пусть плоская гармоническая волна распространяется в произвольном направлении, задаваемом единичным вектором . Поверхности постоянных фаз имеют вид плоскостей, перпендикулярных вектору (рис. 1). Введём волновой вектор

Вектор указывает направление распространения волны, а его модуль равен волновому числу K = w/C . Обозначим расстояние, пройденное волной в направлении через x и проведём вектор из начала координат в произвольную точку волнового фронта. Тогда, как видно из рис. 1,

Используя последнее соотношение, получаем

Теперь поле волны можно представить в виде

При гармоническом изменении во времени напряжённостей электрического и магнитного полей частота остаётся постоянной. В оптике часто говорят не о гармонических, а о Монохроматической волне. Монохроматический означает “одноцветный”. Термин этот возник потому, что в видимом диапазоне глаз регистрирует изменение частоты излучения как изменение цвета.

В дальнейшем для зависимости напряжённости поля в волне от координат и времени вместо (13) удобно использовать комплексную запись, принимая во внимание формулу Эйлера

Величина Е 0 в (14) может быть как действительной, так и комплексной. Учитывая, что в общем случае:

И tg j = Im(E 0)/Re(E 0), запишем выражение (14) в виде

,

Где |E 0| — амплитуда плоской волны, j – начальная фаза колебаний в точке = 0. Знак “Re” и знак модуля при записи будем опускать, не забывая, однако, о том, что физический смысл имеет лишь вещественная часть используемых комплексных выражений.

(15)

Комплексная запись особенно удобна потому, что при её использовании дифференцирование напряжённости поля по времени ¶/¶T сводится, как видно из (15), просто к умножению на iw. Скалярное произведение можно записать в виде (Kx ·X + Ky ·X + Kz ·X ), поэтому дифференцирование , например, по координате x сводится к умножению на Ikx .

Нетрудно убедиться, что уравнениям (9) удовлетворяют и волны вида

В которых напряжённости полей зависят только от одной пространственной переменной – модуля радиус-вектора.

Такие волны называют сферическими.

Рассмотрим скалярное волновое уравнение

И будем искать его решение вида Ф = Ф(T ,R ). Для сферически симметричной функции Ф оператор Лапласа имеет вид

Поэтому волновое уравнение перепишется следующим образом

Введём вспомогательную функцию F = R Ф. Тогда последнее уравнение преобразуется к виду, аналогичному (10):

И, следовательно, его общее решение представится в виде суперпозиции двух волн, бегущих во взаимно противоположных направлениях:

Возвращаясь к искомой функции Ф, получим

(16)

Выражение (16) описывает две сферические волны. Первое слагаемое представляет собой волну, движущуюся в направлении увеличения значений r, т. е. от центра, где расположен точечный источник. Такая волна называется Расходящейся . Второе слагаемое описывает волну, движущуюся в направлении уменьшения значения r, т. е. к центру. Такая волна называется Сходящейся . Значение Ф в фиксированный момент времени на сфере постоянного радиуса являтся постоянным.

Если на сфере радиуса r0 задать гармоническое возмущение, синфазное во всех точках сферы

,

То возбуждаемая таким источником расходящаяся волна при r > r0 может быть представлена в виде:

Здесь в отличие от плоской волны амплитуда зависит от координаты, а фазовый и амплитудный фронты представляет собой сферы.

В комплексном представлении расходящаяся сферическая волна запишется так:

(18)

Наряду с плоской, сферическая гармоническая волна является эталонной волной, имеющей большое значение для оптики. Поэтому и сделан особый акцент на описание этих волновых процессов. Хотя сами по себе эти волны являются в значительной степени математической абстракцией, их роль в описании оптических явлений трудно переоценить. Во многих случаях реальный световой пучок можно разложить в спектр по плоским гармоническим волнам. Излучение реальной среды, состоящей из возбуждённых атомов и молекул, часто можно представить как суперпозицию сферических волн.

Для анализа структуры плоской электромагнитной волны удобно записать уравнения Максвелла в символической форме с помощью векторного дифференциального оператора “набла”.

,

Где — единичные векторы, направленные вдоль осей X , Y , Z декартовой системы координат.

Принимая во внимание, что для произвольного векторного поля

Уравнения Максвелла (1) – (4) можно записать так:

(19)

Будем искать решение этих уравнений в виде плоских гармонических волн

(23)

(24)

Где и – постоянные векторы, не зависящие от времени, но компоненты которых могут быть комплексными. Подставляя выражения (23) и (24) в уравнение (19) – (22) и учитывая, что

Получаем следующие соотношения:

(25)

Страница 1

План

1. Вступление

2. Понятие волна и ее характеристики

3. Электромагнитные волны

4. Экспериментальное доказательство существования электромагнитных волн

5. Плотность потока электромагнитного излучения

6. Изобретение радио

7. Свойства электромагнитных волн

8. Модуляция и детектирование

9. Виды радиоволн и их распространение

Вступление

Волновые процессы чрезвычайно широко распространены в природе. В природе существует два вида волн: механические и электромагнитные. Ме­ханические волны распространяются в веществе: газе, жидкости или твердом теле. Электромагнитные волны не нуждаются в каком-либо веществе для своего распростра­нения, к которым, в частности, от­носятся радиоволны и свет. Электромагнитное поле может су­ществовать в вакууме, т. е. в пространстве, не содержащем ато­мов. Несмотря на существенное отличие электромагнитных волн от механических, электромагнитные волны при своем распростра­нении ведут себя подобно механическим. Но подобно колебаниям все виды волн описываются количественно одинаковыми или почти одинаковыми законами. В своей работе я постараюсь рассмотреть причины возникновения электромагнитных волн, их свойства и применение в нашей жизни.

Понятие волна и ее характеристики

Волной называют колебания, распростра­няющиеся в пространстве с течением времени.

Важнейшей ха­рактеристикой волны является ее скорость. Волны любой природы не распространяются в пространстве мгновенно. Их скорость конечна.

При распространении механической волны движе­ние передается от одного участка тела к другому. С передачей движения связана передача энергии. Ос­новное свойство всех волн незави­симо от их природы состоит в пере­носе ими анергии без переноса вещества. Энергия поступает от источ­ника, возбуждающего колебания на­чала шнура, струны и т. д., и распро­страняется вместе с волной. Через любое поперечное сечение непрерывно течет энергия. Эта энергия слагается из кинети­ческой энергии движения участков шнура и потенциальной энергии его упругой деформации. Постепенное уменьшение амплитуды колебаний, при распространении волны связано с превращением части механической энергии во внутреннюю.

Если заставить конец растянутого резинового шнура колебаться гармонически с опреде­ленной частотой v, то эти колеба­ния начнут распространяться вдоль шнура. Колебания любого участка шнура происходят с той же часто­той и амплитудой, что и колебания конца шнура. Но только эти колеба­ния сдвинуты по фазе друг относи­тельно друга. Подобные волны назы­ваются монохроматическими .

Если сдвиг фаз между колеба­ниями двух точек шнура равен 2п, то эти точки колеблются совершенно одинаково: ведь соs(2лvt+2л) = =соs2пvt. Такие колебания назы­ваются синфазными (происходят в одинаковых фазах).

Расстояние между ближайшими друг к другу точками, колеблющими­ся в одинаковых фазах, называется длиной волны.

Связь между длиной волны λ, частотой v и скоростью распростра­нения волны c. За один период ко­лебаний волна распространяется на расстояние λ. Поэтому ее скорость определяется формулой

Так как период Т и частота v свя­заны соотношением T = 1 / v

Скорость волны равна произведению длины волны на частоту колебаний.

Электромагнитные волны

Теперь перейдем к рассмотрению непосредственно электромагнитных волн.

Фунда­ментальные законы природы могут дать гораздо боль­ше, чем заключено в тех фактах, на основе которых они получены. Одним из таких относятся открытые Макс­веллом законы электромагнетизма.

Среди бесчисленных, очень инте­ресных и важных следствий, выте­кающих из максвелловских законов электромагнитного поля, одно заслу­живает особого внимания. Это вы­вод о том, что электромагнитное взаимодействие распространяется с конечной скоростью.

Согласно теории близкодействия Перемещение заряда меняет электрическое поле вблизи него. Это переменное электрическое поле порождает переменное магнитное поле в соседних областях пространства. Переменное же магнитное поле в свою очередь порождает переменное электрическое поле и т. д.

Перемещение заряда вызывает, таким образом, «всплеск» электро­магнитного поля, который, распространяясь, охватывает все большие области окружающего пространства.

Максвелл математически дока­зал, что скорость распространения этого процесса равна скорости све­та в вакууме.

Пред­ставьте себе, что электрический заряд не просто сместился из одной точки в другую, а приведен в быстрые колебания вдоль некоторой прямой. Тогда элек­трическое поле в непосредственной близости от заряда начнет периоди­чески изменяться. Период этих изме­нений, очевидно, будет равен периоду колебаний заряда. Переменное элек­трическое поле будет порождать пе­риодически меняющееся магнитное поле, а последнее в свою очередь вызовет появление переменного элек­трического поля уже на большем расстоянии от заряда и т.д.

В каждой точке пространства электрические и магнитные поля ме­няются во времени периодически. Чем дальше расположена точка от заряда, тем позднее достигнут ее ко­лебания полей. Следовательно, на разных расстояниях от заряда коле­бания происходят с различными фа­зами.

Направления колеблющихся век­торов напряженности электрическо­го поля и индукции магнитного по­ля перпендикулярны к направлению распространения волны.

Электромагнитная волна является поперечной.

Электромагнитные волны излу­чаются колеблющимися зарядами. При этом существенно, что скорость движения таких зарядов меняется со временем, т. е. что они движутся с ускорением. Наличие ускорения - главное условие излучения электро­магнитных волн. Электромагнитное поле излучается заметным образом не только при колебаниях заряда, но и при любом быстром изменении его скорости. Интенсивность излу­ченной волны тем больше, чем боль­ше ускорение, с которым движется заряд.

Максвелл был глубоко убежден в реальности электромагнитных волн. Но он не дожил до их эксперимен­тального обнаружения. Лишь через 10 лет после его смерти электро­магнитные волны были экспериментально получены Герцем.