Записать уравнение смещения при гармоническом колебании. Гармонические колебания и их характеристики. Превращения энергии при гармонических колебаниях

Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

где х - значение изменяющейся величины, t - время, остальные параметры - постоянные: А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде

(Любое нетривиальное решение этого дифференциального уравнения - есть гармоническое колебание с циклической частотой )

Виды колебаний

    Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Чтобы свободные колебания были гармоническими, необходимо, чтобы колебательная система была линейной (описывалась линейными уравнениями движения), и в ней отсутствовала диссипация энергии (последняя вызвала бы затухание).

    Вынужденные колебания совершаются под воздействием внешней периодической силы. Чтобы они были гармоническими, достаточно чтобы колебательная система была линейной (описывалась линейными уравнениями движения), а внешняя сила сама менялась со временем как гармоническое колебание (то есть чтобы зависимость от времени этой силы была синусоидальной).

Уравнение гармонических колебаний

Уравнение (1)

дает зависимость колеблющейся величины S от времени t; это и есть уравнение свободных гармонических колебаний в явном виде. Однако обычно под уравнением колебаний понимают иную запись этого уравнения, в дифференциальной форме. Возьмем для определенности уравнение (1) в виде

дважды продифференцируем его по времени:

Видно, что выполняется следующее соотношение:

которое и называется уравнением свободных гармонических колебаний (в дифференциальной форме). Уравнение (1) является решением дифференциального уравнения (2). Поскольку уравнение (2) - дифференциальное уравнение второго порядка, необходимы два начальных условия для получения полного решения (то есть определения входящих в уравнение (1) констант A и  ); например, положение и скорость колебательной системы при t = 0.

Математи́ческий ма́ятник - осциллятор, представляющий собой механическую систему, состоящую изматериальной точки, находящейся на невесомой нерастяжимой нити или на невесомом стержне в однородном поле сил тяготения. Период малых собственных колебаний математического маятника длины l неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен

и не зависит от амплитуды и массы маятника.

Физический маятник - осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.

Мы рассмотрели несколько физически совершенно различных систем, и убедились, что уравнения движения приводятся к одной и той же форме

Различия между физическими системами проявляются лишь в различном определении величины и в различном физическом смысле переменной x : это может быть координата, угол, заряд, ток и т. д. Отметим, что при этом, как следует из самой структуры уравнения (1.18), величина всегда имеет размерность обратного времени.

Уравнение (1.18) описывает так называемые гармонические колебания .

Уравнение гармонических колебаний (1.18) является линейным дифференциальным уравнением второго порядка (так как оно содержит вторую производную от переменной x ). Линейность уравнения означает, что

    если какая-то функция x(t) является решением этого уравнения, то функция Cx(t) также будет его решением (C – произвольная постоянная);

    если функции x 1 (t) и x 2 (t) являются решениями этого уравнения, то их сумма x 1 (t) + x 2 (t) также будет решением того же уравнения.

Доказана также математическая теорема, согласно которой уравнение второго порядка имеет два независимых решения. Все остальные решения, согласно свойствам линейности, могут быть получены как их линейные комбинации. Непосредственным дифференцированием легко проверить, что независимые функции и удовлетворяют уравнению (1.18). Значит, общее решение этого уравнения имеет вид:

где C 1 , C 2 - произвольные постоянные. Это решение может быть представлено и в другом виде. Введем величину

и определим угол соотношениями:

Тогда общее решение (1.19) записывается как

Согласно формулам тригонометрии, выражение в скобках равно

Окончательно приходим к общему решению уравнения гармонических колебаний в виде:

Неотрицательная величина A называется амплитудой колебания , - начальной фазой колебания . Весь аргумент косинуса - комбинация - называется фазой колебания .

Выражения (1.19) и (1.23) совершенно эквивалентны, так что мы можем пользоваться любым их них, исходя из соображений простоты. Оба решения являются периодическими функциями времени. Действительно, синус и косинус периодичны с периодом . Поэтому различные состояния системы, совершающей гармонические колебания, повторяются через промежуток времени t* , за который фаза колебания получает приращение, кратное :

Отсюда следует, что

Наименьшее из этих времен

называется периодом колебаний (рис. 1.8), а - его круговой (циклической) частотой .

Рис. 1.8.

Используют также и частоту колебаний

Соответственно, круговая частота равна числу колебаний за секунд.

Итак, если система в момент времени t характеризуется значением переменной x(t), то, то же самое значение, переменная будет иметь через промежуток времени (рис.1.9), то есть

Это же значение, естественно, повторится через время 2T , ЗT и т. д.

Рис. 1.9. Период колебаний

В общее решение входят две произвольные постоянные (C 1 , C 2 или A , a ), значения которых должны определяться двумя начальными условиями . Обычно (хотя и не обязательно) их роль играют начальные значения переменной x(0) и ее производной .

Приведем пример. Пусть решение (1.19) уравнения гармонических колебаний описывает движение пружинного маятника. Значения произвольных постоянных зависят от способа, каким мы вывели маятник из состояния равновесия. Например, мы оттянули пружину на расстояние и отпустили шарик без начальной скорости. В этом случае

Подставляя t = 0 в (1.19), находим значение постоянной С 2

Решение, таким образом, имеет вид:

Скорость груза находим дифференцированием по времени

Подставляя сюда t = 0, находим постоянную С 1 :

Окончательно

Сравнивая с (1.23), находим, что - это амплитуда колебаний, а его начальная фаза равна нулю: .

Выведем теперь маятник из равновесия другим способом. Ударим по грузу, так что он приобретет начальную скорость , но практически не сместится за время удара. Имеем тогда другие начальные условия:

наше решение имеет вид

Скорость груза будет изменяться по закону:

Подставим сюда :

Колебания, возникающие под действием внешних, периодически изменяющихся сил (при периодическом поступлении энергии извне к колебательной системе)

Превращение энергии

Пружинный маятник

Циклическая частота и период колебаний равны, соответственно:

Материальная точка, закрепленная на абсолютно упругой пружине

Ø график зависимости потенциальной и кинетической энергии пружинного маятника от координаты х.

Ø качественные графики зависимостей кинетической и потенциальной энергии от времени.

Ø Вынужденные

Ø Частота вынужденных колебаний равна частоте изменения внешней силы

Ø Если Fbc изменяется по закону синуса или косинуса, то вынужденные колебания будут гармоническими


Ø При автоколебаниях необходимо периодическое поступлении энергии от собственного источника внутри колебательной системы

Гармонические колебания – это колебания, при которых колеблющаяся величина изменяется со временем по закону синуса или косинуса

уравнения гармонических колебаний (законы движения точек) имеют вид


Гармоническими колебаниями называются такие колебания, при которых колеблющаяся величина меняется от времени по закону синуса или косинуса .
Уравнение гармонических колебаний имеет вид:

,
где A - амплитуда колебаний (величина наибольшего отклонения системы от положения равновесия) ; - круговая (циклическая) частота. Периодически изменяющийся аргумент косинуса - называется фазой колебаний . Фаза колебаний определяет смещение колеблющейся величины от положения равновесия в данный момент времени t. Постояннаяφ представляет собой значение фазы в момент времени t = 0 и называется начальной фазой колебания . Значение начальной фазы определяется выбором начала отсчета. Величина x может принимать значения, лежащие в пределах от -A до +A.
Промежуток времени T, через который повторяются определенные состояния колебательной системы, называется периодом колебаний . Косинус - периодическая функция с периодом 2π, поэтому за промежуток времени T, через который фаза колебаний получит приращение равное 2π, состояние системы, совершающей гармонические колебания, будет повторяться. Этот промежуток времени T называется периодом гармонических колебаний.
Период гармонических колебаний равен : T = 2π/.
Число колебаний в единицу времени называется частотой колебаний ν.
Частота гармонических колебаний равна: ν = 1/T. Единица измерения частоты герц (Гц) - одно колебание в секунду.
Круговая частота = 2π/T = 2πν дает число колебаний за 2π секунд.

Обобщенное гармоническое колебание в дифференциальном виде



Графически гармонические колебания можно изображать в виде зависимости x от t (рис.1.1.А), так и методом вращающейся амплитуды (метод векторных диаграмм) (рис.1.1.Б).

Метод вращающейся амплитуды позволяет наглядно представить все параметры, входящие в уравнение гармонических колебаний. Действительно, если вектор амплитуды А расположен под углом φ к оси х (см. Рисунок 1.1. Б), то его проекция на ось х будет равна: x = Acos(φ). Угол φ и есть начальная фаза. Если вектор А привести во вращение с угловой скоростью , равной круговой частоте колебаний, то проекция конца вектора будет перемещаться по оси х и принимать значения, лежащие в пределах от -A до +A, причем координата этой проекции будет меняться со временем по закону:
.
Таким образом, длина вектора равна амплитуде гармонического колебания, направление вектора в начальный момент образует с осью x угол равный начальной фазе колебаний φ, а изменение угла направления от времени равно фазе гармонических колебаний. Время, за которое вектор амплитуды делает один полный оборот, равно периоду Т гармонических колебаний. Число оборотов вектора в секунду равно частоте колебаний ν.

«Физика - 11 класс»

Ускорение - вторая производная координаты по времени.

Мгновенная скорость точки - это производная координаты точки по времени.
Ускорение точки - это производная ее скорости по времени, или вторая производная координаты по времени.
Поэтому уравнение движения маятника можно записать так:

где х" - вторая производная координаты по времени.

При свободных колебаниях координата х изменяется со временем так, что вторая производная координаты по времени прямо пропорциональна самой координате и противоположна ей по знаку.


Гармонические колебания

Из математики: вторые производные синуса и косинуса по их аргументу пропорциональны самим функциям, взятым с противоположным знаком, и никакие другие функции таким свойством не обладают.
Поэтому:
Координата тела, совершающего свободные колебания, меняется с течением времени по закону синуса или косинуса.


Периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса, называются гармоническими колебаниями .


Амплитуда колебаний

Амплитудой гармонических колебаний называется модуль наибольшего смещения тела от положения равновесия.

Амплитуда определяется начальными условиями, а точнее энергией, сообщаемой телу.

График зависимости координаты тела от времени представляет собой косинусоиду.

х = x m cos ω 0 t

Тогда уравнение движения, описывающее свободные колебания маятника:

Период и частота гармонических колебаний.

При колебаниях движения тела периодически повторяются.
Промежуток времени Т, за который система совершает один полный цикл колебаний, называется периодом колебаний .

Частота колебаний - это число колебаний в единицу времени.
Если одно колебание совершается за время Т то число колебаний за секунду

В Международной системе единиц (СИ) единица частоты называется герцем (Гц) в честь немецкого физика Г. Герца.

Число колебаний за 2π с равно:

Величина ω 0 - это циклическая (или круговая) частота колебаний.
Через промежуток времени, равный одному периоду, колебания повторяются.

Частоту свободных колебаний называют собственной частотой колебательной системы.
Часто для краткости циклическую частоту называют просто частотой.


Зависимость частоты и периода свободных колебаний от свойств системы.

1. для пружинного маятника

Собственная частота колебаний пружинного маятника равна:

Она тем больше, чем больше жесткость пружины k, и тем меньше, чем больше масса тела m.
Жесткая пружина сообщает телу большее ускорение, быстрее меняет скорость тела, а чем тело массивнее, тем медленнее оно изменяет скорость под влиянием силы.

Период колебаний равен:

Период колебаний пружинного маятника не зависит от амплитуды колебаний.


2. для нитяного маятника

Собственная частота колебаний математического маятника при малых углах отклонения нити от вертикали зависит от длины маятника и ускорения свободного падения:

Период же этих колебаний равен

Период колебаний нитяного маятника при малых углах отклонения не зависит от амплитуды колебаний.

Период колебаний возрастает с увеличением длины маятника. От массы маятника он не зависит.

Чем меньше g, тем больше период колебаний маятника и, следовательно, тем медленнее идут часы с маятником. Так, часы с маятником в виде груза на стержне отстанут за сутки почти на 3 с, если их поднять из подвала на верхний этаж Московского университета (высота 200 м). И это только за счет уменьшения ускорения свободного падения с высотой.

Меняется во времени по синусоидальному закону:

где х — значение колеблющейся величины в момент времени t , А — амплитуда , ω — круговая частота, φ — начальная фаза колебаний, (φt + φ ) — полная фаза колебаний . При этом величины А , ω и φ — постоянные.

Для механических колебаний колеблющейся величиной х являются, в частности, смещение и скорость , для электрических колебаний — напряжение и сила тока .

Гармонические колебания занимают особое место среди всех видов колебаний, т. к. это единственный тип колебаний, форма которых не искажается при прохождении через любую однородную среду, т. е. волны, распространяющиеся от источника гармонических колебаний, также будут гармоническими. Любое негармоническое колебание может быть представлено в виде сумм (интеграла) различных гармонических колебаний (в виде спектра гармонических колебаний).

Превращения энергии при гармонических колебаниях.

В процессе колебаний происходит переход потенциальной энергии W p в кинетическую W k и наоборот. В положении максимального отклонения от положения равновесия потенциальная энергия максимальна, кинетическая равна нулю. По мере возвращения к положению равновесия скорость колеблющегося тела растет, а вместе с ней растет и кинетическая энергия, достигая максимума в положении равновесия. Потенциальная энергия при этом падает до нуля. Дальней-шее движение происходит с уменьшением скорости, которая падает до нуля, когда отклонение достигает своего второго максимума. Потенциальная энергия здесь увеличивается до своего перво-начального (максимального) значения (при отсутствии трения). Таким образом, колебания кинетической и потенциальной энергий происходят с удвоенной (по сравнению с колебаниями самого маятника) частотой и находятся в противофазе (т. е. между ними существует сдвиг фаз, равный π ). Полная энергия колебаний W остается неизменной. Для тела, колеблющегося под действием силы упругости , она равна:

где v m — максимальная скорость тела (в положении равновесия), х m = А — амплитуда.

Из-за наличия трения и сопротивления среды свободные колебания затухают: их энергия и амплитуда с течением времени уменьшаются. Поэтому на практике чаще используют не свободные, а вынужденные колебания.